

APPLICATION NOTE
UT700
Understanding the LEON Buses Capability
UT700 LEON 3FT

10/22/2019
Version #: 1.0.0

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 2 of 6

UT700
Understanding the LEON Buses Capability UT700 LEON 3FT APPLICATION NOTE

Version #: 1.0.0 10/22/2019

Product Name Manufacturer Part
Number SMD # Device Type Internal PIC Number

UT700 LEON UT700 5962-13238 LEON Buses WQ03

Table 1: Cross Reference of Applicable Products

1.0 Overview
This application note explains the UT700 LEON 3FT SPARC™ V8 Microprocessor data bus capability and how the LEON
presents a sub-word operation to the bus with a 16-bit or 32-bit configuration. Knowing how the sub-word operates on the
data bus at different segments of the memory map can allow programmers to use the appropriate programming language
syntax when communicating over the bus.

Note: The description in this application note describes how to directly use the memory mapped interface of a specific
hardware peripheral. If you are using an operating system such as RTEMS, Linux, and VxWorks or an environment such as
BCC then it is recommended to use the infrastructure provided by those environments instead of accessing the peripheral
directly as described in this application note.

2.0 Application Note Layout
This application note starts by providing a brief description of how the LEON CPU presents a sub-word operation to the bus.
We follow by showing the different memory map segments and how the bus corresponding to that memory segment will
operate. More details about the unique feature of each segment bus operation follow with C code examples to elaborate
on the critical nature of programming the bus corresponding to the different memory segments.

These subsections are described in detail below:

• LEON Sub-word Operation
• LEON Memory Map and Bus Operations
• Bus Access Programming Examples.

3.0 LEON Sub-word Operation
The UT700 LEON 3FT SPARC™ V8 Microprocessor presents a sub-word datum on the data bus by duplicating the subword
size up to 32-bit. Table 2 and Table 3 show how the LEON duplicates the sub-word for the 16-bit and 32-bit data bus.

Sub-word Size (Bit) Value (Hex) LEON 16-bit Data Bus Remarks
Byte/char 8 0x12 0x1212 Before read-modify-write, if supported!

Table 2: 16-bit Bus Sub-word Operation value appear on the bus

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 3 of 6

UT700
Understanding the LEON Buses Capability UT700 LEON 3FT APPLICATION NOTE

Version #: 1.0.0 10/22/2019

Sub-word Size (Bit) Value (Hex) LEON 32-bit
 Data Bus Remarks

Byte/char 8 0x12 0x1212_1212
Before read-modify-write, if supported!

Half word/short 16 0x1234 0x1234_1234

Table 3: 32-bit Bus Sub-word Operation value appear on the bus

These sub-word arrangements allow 8-bit and 16-bit devices to operate on a 16-bit or 32-bit bus. Moreover, the address
bits [1:0] are also presented over the address bus. Unlike a “true” 32-bit bus configuration, the address bits [1:0] are
omitted, allowing only 32-bit peripherals to operate on the bus. The former bus implementation provides the flexibility of
mixing and matching the different peripherals (8-bit, 16-bit, and 32-bit) data bus width to operate on the same bus.
Nonetheless, this flexibility comes with the restriction and limitation. When accessing the peripheral on this bus, the
programmer must use the correct data size corresponding to that peripheral. For example, the LEON has a mix of 32-bit and
8-bit (CAN) peripherals must require the programmer to use the programming language syntax for byte and word to access
these two types of devices. Read-modify-write (RMW) operation cannot be implemented in such a bus configuration.

Note: The LEON has 32-bit and 8-bit (CAN) peripherals and the programmer must use the word and byte access methods
respectively.

3.1 LEON Memory Map and Buses Operation

Table 4 shows the memory map of the LEON processor. Each memory-mapped region has its method to configure the bus
width and to manipulate the datum provided by the LEON (CPU, see Table 2 and Table 3). We will elaborate on each
memory region and its corresponding bus behavior in the next paragraph.

Memory Area Memory Range Memory Chip Select Pins
PROM 0x0000_0000-0x0FFF_FFFF ROM[0]

PROM 0x1000_0000-0x1FFF_FFFF ROM[1]

I/O 0x2000_0000-0x2FFF_FFFF IOS

Reserved 0x3000_0000-0x3FFF_FFFF N/A

SRAM/SDRAM 0x4000_0000-0x7FFF_FFFF RAMS[4: 0]/SDCS[1: 0]

Internal Peripherals 0x8000_0000-0xFFFF_FFFF Internal chip select

Table 4: Memory Map Overview

Each memory region supports a different bus configuration as shown in Table 5. Also, see the UT699E_UT700 LEON
Functional Manual section 3.14, the Register for a more comprehensive information.

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 4 of 6

UT700
Understanding the LEON Buses Capability UT700 LEON 3FT APPLICATION NOTE

Version #: 1.0.0 10/22/2019

Memory Area Data Bus Width Methods of Configuration
PROM 8-bit, 16-bit, and 32-bit GPIO and MCFG1

PROM 8-bit, 16-bit, and 32-bit GPIO and MCFG1

I/O 8-bit, 16-bit, and 32-bit MCFG1

Reserved Reserved Reserved

SRAM
8-bit, 16-bit, and 32-bit

MCFG2 and RMW

SDRAM MCFG3, Byte Lanes, and RMW

Internal Peripherals Peripheral Specific Peripheral Bus Width Specific

Table 5: Type of Memory Device Configurations

3.2 PROM, I/O, and Internal Peripheral Memory Regions

In these memory regions, there are neither RMW nor byte-lanes (BL) support. Accessing the memory devices in these
regions must be peripheral bus width specific; otherwise, unexpected results will be written to the destination memory
location (or Register).

Note: Accessing these memory regions must be PERIPHERAL bus width specific, for example, a 32-bit, 16-bit or 8-bit device
must be accessed using word, half-word, and byte access method respectively.

3.2.1 SRAM Memory Regions

The SRAM memory region supports the RMW feature. When the system starts, power-on reset (POR), the RMW bit is set
(RM=1, MCFG2 [6]). The user must not clear the RM bit. If cleared, unexpected datum will be written to the destination
memory location (see section 3.2). When EDAC is enabled, the check bits are generated based on an aligned 32-bit word
even with an 8-bit bus configuration. EDAC is not supported in a 16-bit configuration.

The RMW operation starts by setting the associated datum in the data cache status bit as dirty (assuming there is an
associated datum in the data cache). The LEON implements a write-through data cache replacement policy will write the
data to the write FIFO. When the memory controller reads that datum from the FIFO, it also reads the memory location
corresponding to that write datum address. The write and read data are masked accordingly to form the desired datum and
write back to that memory location. In the same instant, the snooping logic reads that new datum and writes it back the
data cache and clear the dirty bit.

Note: This memory region supports RMW (RM=1, MCFG2 [6]).

3.2.2 SDRAM Memory Regions

This region supports the byte-lanes operation. In the byte-lanes operation, the address and the opcode are used to decode
the byte-lanes enable signals. For example, a word consists of four bytes with the following arrangement: HH, HL, LH, and LL
bytes. When writing the upper half-word, the byte-lanes associated with HH and HL will be enabled allowing the writing to
that memory location. Similarly, when writing an LH byte, the byte-lane associated with LH is enabled. Our example
elaborates only on a 32-bit configuration.

When EDAC is enabled, the memory controller enables the RMW feature that is independent of the RM bit of the SRAM
region. The SDRAM read-modify-write operation is similar to that of the SRAM region (see section 3.2.1).

Note: This memory region supports byte-lane access method and RMW when EDAC is enabled.

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 5 of 6

UT700
Understanding the LEON Buses Capability UT700 LEON 3FT APPLICATION NOTE

Version #: 1.0.0 10/22/2019

4.0 Bus Access Programming Examples

C-Bit fields do have several advantages as follows:

• Efficiency—storage of data structures by packing.
• Readability—members can be easily addressed by the names assigned to them.
• Low level programming—the biggest advantage of bit fields is that one does not have to keep track of how flags and

masks actually map to the memory. Once the structure is defined, one is completely abstracted from the memory
representation as in the case of bit-wise operations, during which one has to keep track of all the shifts and masks.

C-Bit fields are one of the gotchas of non-portable code. If the project you’re working on is architecture specific, and you
know how the compiler works and you don’t care about portable code, you’re only half golden! You still need to
understand how the bus system works.

The LEON ROM, I/O, and Internal Peripheral buses don’t support the use of C-Bit fields (see Table 2). Here is an example
showing why you shouldn’t use C-Bit fields when using these specified buses.

 Code 1: C-Bit Fields Declaration

Code line Size Datum Bus Memory Result Remarks
20 8 bits 0x12 0x1212_1212 0xFFFF_FFFF 0x1212_1212 overwritten

21 8 bits 0xAB 0xABAB_ABAB 0x1212_1212 0xABAB_ABAB overwritten

Table 6: 32-bit Bus Access with C-Bit Fields Examples (ROM, I/O and Internal Peripheral)

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 6 of 6

UT700
Understanding the LEON Buses Capability UT700 LEON 3FT APPLICATION NOTE

Version #: 1.0.0 10/22/2019

Code 1 shows the C-Bit field declaration for the examples in Table 6. These examples show that they overwrite the former
memory content instead of writing the data in the respective byte positions (the correct datum: 0xFFFF_AB12).

The correct method to access the bus (see Code 2) is to perform a read, mask, and OR the data as shown:

 Code 2: Manual RMW

Code lines 24 to 29 show how one can write the correct value to the memory. If one doesn’t care about the former content
in the memory location, use code line 31 example.

5.0 Summary
Bus accesses in the SRAM and SDRAM regions with C-Bit fields can achieve expected results because these two memory
regions are supported with RMW and byte-lanes hardware. However, refer to section 4.0 if the user wants to use C-Bit fields.

Revision History
Date Revision # Author Change Description Page #

2019-10-22 1.0.0 MTS Initial Release

Frontgrade Technologies Proprietary Information Frontgrade Technologies (Frontgrade or Company) reserves the right to make changes to any products
and services described herein at any time without notice. Consult a Frontgrade sales representative to verify that the information contained herein is
current before using the product described herein. Frontgrade does not assume any responsibility or liability arising out of the application or use of any
product or service described herein, except as expressly agreed to in writing by the Company; nor does the purchase, lease, or use of a product or service
convey a license to any patents, rights, copyrights, trademark rights, or any other intellectual property rights of the Company or any third party.

