

APPLICATION NOTE
UT699-AN-07
UT699 L1 Data and Instruction Cache Organization

9/9/2010
Version #: 1.0.0

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 2 of 9

UT699-AN-07
UT699 L1 Data and Instruction Cache Organization APPLICATION NOTE

Version #: 1.0.0 9/9/2010

Product Name: Manufacturer Part
Number SMD # Device

Type
Internal PIC

Number:
UT699 32-bit Fault-Tolerant
SPARC V8/LEON 3FT Processor UT699 5962-08228 01, 02 WG07

Table 1: Cross Reference of Applicable Products

* PIC = Product Identification Code

1.0 Introduction
Cache memory is an important element in microprocessors. In the UT699, each instruction and data access from external
memory can take up to three clock cycles during random accesses and two clock cycles during burst instruction fetches.
Accesses to cache memory in a processor such as the UT699 take only a single clock cycle. Microprocessor designers usually
place cache memory on the same die as the central processing unit in order to achieve this fast access time.

During code execution, the processor fetches instructions and data from external memory and stores it into on-chip cache
memory. Subsequent accesses to cached instructions or data will then take only a single CPU clock cycle per access. This
results in higher system performance as a processor utilizing cache requires fewer clock cycles to execute code as the same
processor without cache.

This application note explains the cache organization of the UT699, how the UT699 determines cache addresses, and the
use of cache tags. Finally, Section 6 provides assembly code examples that the software programmer can utilize to access
cache data and tags.

2.0 Cache Organization
The UT699 Leon 3FT microprocessor has 8kB of L1 instruction cache and 8kB of L1 data cache. Both cache units are
organized as two-way, set associative, resulting in a logical configuration of 2x4kB for both instruction cache and data
cache. The instruction cache is organized as 128 lines with 32 bytes per line for each set. The data cache is organized as 256
lines with 16 bytes per line for each set. In the event of a cache miss, i.e., a cache location does not contain valid data, the
cache controller replaces an entire cache line using a least-recently used (LRU) replacement policy. The instruction and data
cache are organized as shown in Tables 2 and 3.

Table 2: Instruction Cache Organization

Set Line Byte
0 0 31 30 ... 4 3 2 1 0

0 ... 31 30 ... 4 3 2 1 0

0 127 31 30 ... 4 3 2 1 0

1 0 31 30 ... 4 3 2 1 0

1 ... 31 30 ... 4 3 2 1 0

1 127 31 30 ... 4 3 2 1 0

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 3 of 9

UT699-AN-07
UT699 L1 Data and Instruction Cache Organization APPLICATION NOTE

Version #: 1.0.0 9/9/2010

Table 3: Data Cache Organization

Set Line Byte
0 0 15 ... 1 0

0 ... 15 ... 1 0

0 255 15 ... 1 0

1 0 15 ... 1 0

1 ... 15 ... 1 0

1 255 15 ... 1 0

3.0 Cache Addresses
A unique address identifies each cache location. Accesses to either cache data or cache tags make use of these addresses.
Section 5 explains the use of cache tags and their relationship to external addresses. Instruction and data cache addresses
are word aligned. Instruction cache addresses range from 000016 to 0FFC16 for set 0, and from 100016 to 1FFC16 for set 1.
Data cache addresses range from 000016 to 0FFC16 for set 0, and from 100016 to 1FFC16 for set 1. Since cache addresses are
always aligned on 32-bit word boundaries, they must end in 0016, 0416, 0816, or 0C16.

Table 4 shows an example of the addresses for the words in line 2 of set 1 of the instruction cache. For example, instruction
cache address 104016 is the address of word 0 of line 2 of set 1 of the instruction cache.

Table 4: Logical Representation of Instruction Cache Address

Cache
Address Set Line Word “00”1

104016 x x x 1 0 0 0 0 0 1 0 0 0 0 0 0

104416 x x x 1 0 0 0 0 0 1 0 0 0 1 0 0

... x x x 1 0 0 0 0 0 1 0 ... 0 0

105C16 x x x 1 0 0 0 0 0 1 0 1 1 1 0 0

Table 5 shows an example of the addresses for the words in line 2 of set 1 of the data cache.

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 4 of 9

UT699-AN-07
UT699 L1 Data and Instruction Cache Organization APPLICATION NOTE

Version #: 1.0.0 9/9/2010

Table 5: Logical Representation of Data Cache Address

Cache
Address Set Line Word “00”1

102016 x x X 1 0 0 0 0 0 0 1 0 0 0 0 0

102416 x x X 1 0 0 0 0 0 0 1 0 0 1 0 0

102816 x x X 1 0 0 0 0 0 0 1 0 1 0 0 0

102C16 x x x 1 0 0 0 0 0 0 1 0 1 1 0 0

Notes:
1. The two least-significant bits for both instruction and data cache addresses are always “00”, indicating word alignment.

4.0 Data Caching
The following section provides an example of how external data is stored in cache memory, demonstrates the case where
two external addresses are mapped to the same cache location, and explains how cache sets are used.

Each set of the data cache contains 4096 bytes, or 1024 words, of cache memory that map to the entire 1GB external
address space. Therefore, each individual cache location maps to 256k locations in external memory. Conversely, there are
256k locations of external address locations that map to a single location in cache memory. Now consider the case where
two variables are written to external data, the first to address 4000200016 and the second to address 4000300016. Both
variables are aligned on a 4kB boundary, which is the size of each data cache set. Therefore, they necessarily map to the
same cache location. Specifically, they both map to the data cache at address 000016. This is shown in Figure 1 below.

 Figure 1. Example of External Data being written to Cache

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 5 of 9

UT699-AN-07
UT699 L1 Data and Instruction Cache Organization APPLICATION NOTE

Version #: 1.0.0 9/9/2010

In this example, the first write to external address 4000200016 results in a write to cache location 000016, which is the first
word of the first row of set 0. The valid bit for this cache location will be set, indicating that the cache location contains
valid data. Valid bits are discussed further in Section 5. Next, data is written to external address 4000300016. If the valid bit
for cache location 000016 were not set, this would result in a write to that cache location. However, since the valid bit is set,
the write occurs to cache address 100016, which is the first word of the first row of set 1.

The cache controller uses a least-recently used (LRU) replacement policy. This means that a subsequent update to external
memory on the same 4kB boundary results in a write to cache location 000016, assuming location 100016 was the most
recently accessed location. The cache data will be overwritten with the new data.

5.0 Cache Tags and Data
Each cache memory location has an associated cache data and a cache tag. The cache tag of a particular cache location
contains information that identifies the address of the associated data in external memory. The cache data of a particular
cache location contains the data corresponding to the data in external memory. Refer to the tag layouts in Figures 2 and 4.
These figures show the fields of the instruction and data cache tags. The actual physical layout of the cache tags is explained
in Section 2.6.3 of the UT699 Functional Manual. The ITAG and DTAG fields contain the most-significant 20 bits of the
address of the data in external memory. The least-significant 12 address bits directly correspond to the cache address and
are used to access cache tags and data using the load and store instructions lda and sta. The IVAL and DVAL fields identify
whether or not the corresponding word in a cache line is valid. A ‘1’ indicates that the word is valid, and accesses to the
data or instruction at that address result in a valid cache hit. Note: The valid bits are shared with all cache tags for a given
cache line. For more information on the instruction and data tag layouts, please refer to the UT699 Functional Manual.

The cache data fields are represented in Figures 3 and 5. These are 32-bit fields that contain the same data as the
referenced address in external memory when the cache is valid, i.e., the valid bit is set for that cache location.

Figure 2. Instruction Cache Tag Layout

 Figure 3. Instruction Cache Data Layout

Figure 4. Data Cache Tag Layout

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 6 of 9

UT699-AN-07
UT699 L1 Data and Instruction Cache Organization APPLICATION NOTE

Version #: 1.0.0 9/9/2010

 Figure 5. Data Cache Data Layout

Consider the previous example in Figure 1 of a write to external memory at address 4000200016. It is assumed that prior to
the write, the entire cache line does not contain valid data, i.e., the DVAL field is 00002. Following the write to external
memory, the data cache tag contains the following information (in hexadecimal):

To reconstruct the external address from the cache tag, the DTAG or ITAG field is concatenated with the cache address. In
this example, the DTAG field is 4000216 and the cache address is 000016. Therefore, the referenced external address is:

40002xxx16 + 000016 = 4000200016.

Following this write, the data cache at location 000016 contains the same data as external address 4000200016.

6.0 Accessing Cache Memory Using Alternate Space Identifier (ASI)
Instructions
Accesses to the cache tags and cache data are handled automatically by the LEON 3FT core. However, they can be accessed
using lda and sta instructions. These commands are similar to the load and store instructions ld and st, except that
they access memory in an alternate memory space using an alternate space identifier (ASI). The following table shows the
ASI usage for the UT699 microprocessor.

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 7 of 9

UT699-AN-07
UT699 L1 Data and Instruction Cache Organization APPLICATION NOTE

Version #: 1.0.0 9/9/2010

Table 6: ASI Usage

ASI Usage
0116 Forced cache miss

0216 System (cache control) registers

0816, 0916, 0A16, 0B16 Normal instruction and data access

0C16 Instruction cache tags

0D16 Instruction cache data

0E16 Data cache tags

0F16 Data cache data

1016 Flush entire instruction cache

1116 Flush entire data cache

For example, to access the data cache tag and cache data at a particular cache location, the programmer must use ASI 0E16
and 0F16 with an lda and sta instruction using inline assembly code. The most efficient way to access memory in the
standard or an alternate memory space is to create inline assembly procedures called as C routines.

The following four functions show examples of inline assembly code. The first two show how to perform a store and load
operation in standard memory space.

The next two functions are used to read the values of the data cache tags and data cache data in alternate spaces

0E16 and 0F16, respectively.

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 8 of 9

UT699-AN-07
UT699 L1 Data and Instruction Cache Organization APPLICATION NOTE

Version #: 1.0.0 9/9/2010

We can now make use of our inline assembly routines using a C function call. An example is the following write to data
memory at locations 4000200016 and 4000300016 in standard memory space using the following C code:

In the event of a flushed data cache line or a cleared valid bit at cache location 000016, both physical memory locations
would map to data cache address 000016, i.e., word 0 of line 0 of set 0. However, this example shows that the first store
operation results in the writing of data 5555555516 to set 0, with the second store operation writing data to set 1. The C
functions and resultant returned values are shown below:

The instruction passes the 12-bit cache address as a function parameter. The first function returns the cache data
5555555516. The second function returns the data cache tag 4000200116. The five most-significant hex digits of the tag
indicate the upper 20 address bits of the data stored in physical memory space. The least-significant hex digit corresponds
to the valid bits for the cache line. In this example, the value of ‘1’ in the least-significant digit indicates that word 0 is now
valid as a result of the first storemem operation.

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 9 of 9

UT699-AN-07
UT699 L1 Data and Instruction Cache Organization APPLICATION NOTE

Version #: 1.0.0 9/9/2010

The first storemem operation resulted in an update of the data cache memory at location 000016. Therefore, any access to
data in physical memory at an address with the same three least-significant hex digits results in either a replacement at
cache location 000016, or the data being written to set 1 at address 100016. Since only cache location 000016 has been
updated, the data will be written to set 1. To illustrate this, the data cache data and data cache tag at cache location 100016
are accessed using the following instructions:

These instructions return values of AAAAAAAA16 and 4000300116 for the data cache data and tag, respectively, showing that
the data was stored in set 1. As before, the ‘1’ in the least-significant digit of the data cache tag indicates that the first word
in the cache line is valid.

Note: Diagnostic accesses to instruction cache (ASI 0C16 and 0D16) fail unless the instruction cache is disabled in the cache control register.

7.0 Conclusion
Updates and accesses to data and instruction cache during the execution of application code are automatically handled by the
LEON 3FT processor core logic. However, the contents of the cache tags and data are readily available with memory accesses
using alternate space identifier (ASI) instructions. This can be particularly useful during code debug when confirmation of cache
accesses is required or to compare performance in a system where cache could be either enabled or disabled.

Revision History
Date Revision # Author Change Description Page #

9/9/2010 1.0.0 N/A Initial release

Frontgrade Technologies Proprietary Information Frontgrade Technologies (Frontgrade or Company) reserves the right to make changes to any products
and services described herein at any time without notice. Consult a Frontgrade sales representative to verify that the information contained herein is
current before using the product described herein. Frontgrade does not assume any responsibility or liability arising out of the application or use of any
product or service described herein, except as expressly agreed to in writing by the Company; nor does the purchase, lease, or use of a product or service
convey a license to any patents, rights, copyrights, trademark rights, or any other intellectual property rights of the Company or any third party.

