

APPLICATION NOTE
UT32M0R500
SPI Unit

12/6/2018
Version #: 1.0.0

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 2 of 11

UT32M0R500
SPI Unit APPLICATION NOTE

Version #: 1.0.0 12/6/2018

Product Name Manufacturer Part
Number SMD # Device Type Internal Pic Number

Arm Cortex M0+ UT32M0R500 5962-17212 SPI Unit QS30

Table 1: Cross Reference of Applicable Products

1.0 Overview
The UT32M0R500 contains one Serial Peripheral Interface (SPI) controller. SPI is a synchronous serial

communications interface consisting of four wires. SPI is full-duplex--data can be transmitted and received by using
separate lines. The UT32M0R500 SPI only works as SPI master using Motorola SPI protocol. SPI applications range from
memory SD cards to 8bit shift registers, i.e., 74HC595. The latter is used for illustration in this application note.

To interface to a slave device, the SPI master controller follows the next steps:

1. Pull chip select (CSn) low, to activate a particular slave device.
2. Drive the clock (SCLK) to synchronize communication.
3. Send data on MOSI and receive data on MISO.
4. Pull CSn high to deactivate particular slave device.

Figure 1 shows the SPI master/slave interface and the 4-wire out/in direction.

Figure 1: SPI master/slave communication

2.0 Application Note Layout
This application note (AN) provides a brief description of the SPI unit’s memory map, configuration and programming.

3.0 SPI Unit Hardware
The SPI Unit is mapped to the memory region from 0x4000_6000 to 0x4000_6FFF. It has 22 registers plus 32 data registers.
For more information on each register, refer to Chapter 12 of the UT32R500 Functional Manual.

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 3 of 11

UT32M0R500
SPI Unit APPLICATION NOTE

Version #: 1.0.0 12/6/2018

3.1 SPI Unit Control Register 0

The Control Register 0 (CTRLR0) sets the SPI clock polarity (SCPOL), bit [7], to either high or low; the SPI clock phase (SCPH),
bit [6], to toggle data in the middle or start of the first data bit; SPI data size to 3-15 (DFS), bits [3:0] +1, with default set to 8
bits. SPI Mode (TMOD), bits [9:8] has four different modes, with Transmit and Receive as default, table 2 list all the modes.

MODE MODE Value
Transmit & Receive 00

Transmit Only 01

Receive Only 10

EEPROM Read 11

Table 2. SPI modes

3.2 SPI SSI Enable Register

The SSI Enable Register (SSIENR), bit [0], enables and disables all SPI master operations. When it is disabled, all serial
transfers are halted immediately, transmit and receive FIFO buffers are cleared, and after a short delay, the SCLK is disabled
for saving power consumption in the system.

3.3 SPI Slave Enable Register

The Slave Enable Register (SER), bits [2:0], corresponds to a slave select line respectively. When the master pulls the
corresponding CSn line low, serial data begins to be transferred. When not operating in broadcast mode, only one bit in this
field should be set.

3.4 SPI Baud Rate Select Register

The Baud Rate Select Register (BAUDR) sets the clock divider value (SCKDV), bits [15:0]. If the value is 0, the serial output
clock (SCLK) is disabled. The frequency of the SCLK is derived by dividing SCKDV from the system clock to any even value
between 2 and 65534.

3.5 SPI Transmit FIFO Threshold Level Register

SPI Transmit FIFO Threshold Level Register (TXFTLR). When the number of transmit FIFO entries is less than or equal to this
value, the transmit FIFO empty interrupt is triggered.

3.6 SPI Receive FIFO Threshold Level Register

SPI Receive FIFO Threshold Level Register (RXFTLR). When the number of receive FIFO entries is greater than or equal to
this value + 1, the receive FIFO full interrupt is triggered.

3.7 SPI Transmit FIFO Level Register

SPI Transmit FIFO Level Register (TXFLR) contains the number of valid data entries in the transmit FIFO.

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 4 of 11

UT32M0R500
SPI Unit APPLICATION NOTE

Version #: 1.0.0 12/6/2018

3.8 SPI Receive FIFO Level Register

SPI Transmit FIFO Level Register (RXFLR) contains the number of valid data entries in the receive FIFO memory. This register
can be read at any time.

3.9 SPI Interrupt Mask Register

SPI Interrupt Mask Register (IMR) is read/write and masks or enables all interrupts generated by the SPI master. Masking is
accomplished by clearing a bit to value ‘0’.

3.10 SPI Raw Interrupt Status Register

SPI Interrupt Mask Register (RISR) is read-only for reading the status of the mask interrupts; bit values of 1 are for active
interrupts.

3.11 SPI Transmit FIFO Overflow Interrupt Clear Register

SPI Clear Transmit FIFO Overflow Interrupt (TXOICR) reflects the status of the interrupt. A read from this register clears the
ssi_txo_intr interrupt; writing has no effect.

3.12 SPI Receive FIFO Overflow Interrupt Clear Register

SPI Clear Receive FIFO Overflow Interrupt (RXOICR) reflects the status of the interrupt. A read from this register clears the
ssi_rxo_intr interrupt; writing has no effect.

3.13 SPI Receive FIFO Underflow Interrupt Clear Register

SPI Clear Receive FIFO Underflow Interrupt (RXUICR) reflects the status of the interrupt. A read from this register clears the
ssi_rxu_intr interrupt; writing has no effect.

3.14 SPI Multi-Master Interrupt Clear Register

SPI Clear Multi-Master Contention Interrupt (MSTICR) reflects the status of the interrupt. A read from this register clears
the ssi_mst_intr interrupt; writing has no effect.

3.15 SPI Interrupt Clear Register

SPI Clear Register (ICR) is set if any of the interrupts are active. A read clears the ssi_txo_intr, ssi_rxu_intr, ssi_rxo_intr, and
the ssi_mst_intr interrupts. Writing to this register has no effect.

4.0 SPI Unit Initialization
The SCLK clock frequency is derived by the following equation:

fSCLK =
fCLK(system clock)

Clock Divider (SCKDV)

Once the frequency is set, there are four possible clock modes available for programming the clock edge used for data
sampling and data toggling.

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 5 of 11

UT32M0R500
SPI Unit APPLICATION NOTE

Version #: 1.0.0 12/6/2018

Figure 2 shows the four different modes.

Figure 2: Clock Polarity and Clock Phase Configuration

Figure 3 and Figure 4 show scope plots of the 4 different SPI modes.

Figure 3: Mode 0 and Mode 2

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 6 of 11

UT32M0R500
SPI Unit APPLICATION NOTE

Version #: 1.0.0 12/6/2018

Figure 4: Mode 1 and Mode 3

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 7 of 11

UT32M0R500
SPI Unit APPLICATION NOTE

Version #: 1.0.0 12/6/2018

Code 1 initializes the SPI master control unit.

Code 1: SPI Initialization

5.0 SPI Unit Programming
Section 3.0 presented some of the basic configurations for the SPI core. The following sections show programming
examples by making use of Cobham API’s for the UT32RM0R500.

5.1 SPI Send Data

The API provides a function for sending 4-16 bits to the slave device. The function in Code 2 references the SPI structure
and for a single write, sends the byte to the specific slave device.

Code 2: Single byte SPI write

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 8 of 11

UT32M0R500
SPI Unit APPLICATION NOTE

Version #: 1.0.0 12/6/2018

Data exchange between master and slave happens concurrently; each device sends and receives data at the same time.
When the SPI master exchanges data with the slave, it must pull CSn low and drive the clock SCLK, with the most significant
bit of both data registers sent out first, see Figure 5.

Figure 5: Master and Slave Communication with Mode 0

5.1.1 SPI Receive Data

The API provides a function for receiving data from the specific slave device. The function in Code 3 references the SPI
structure and if the flag RX_FIFO_NOT_EMPTY is set, it reads the data.

Code 3: SPI read byte(s)

Figure 6 shows the Oscilloscope timing diagram for sending and receiving data between SPI master and 74HC595 slave.

Figure 6: SPI Master/74HC595 Slave Mode 1 Configuration

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 9 of 11

UT32M0R500
SPI Unit APPLICATION NOTE

Version #: 1.0.0 12/6/2018

5.1.2 SPI Interrupt

All SPI interrupts are share to one interrupt (IRQ), which is mapped to number 20 in the Interrupt Vector Table. The address
of interrupt 20 in the Interrupt Vector Table is mapped to the SPI_IRQHandler which is the interrupt service routine (ISR) for
all SPI interrupts. In the ISR, software must check for which interrupt happened.

Code 4: SPI RX FIFO full Interrupt settings

Putting it all together, Code 5 shows the main subroutine for sending and receiving SPI data in an endless loop. Code 6
shows The SPI_IRQHandler, which is the interrupt service routine for handling the particular SPI interrupt.

Code 5: Sample program for HC595 shift register

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 10 of 11

UT32M0R500
SPI Unit APPLICATION NOTE

Version #: 1.0.0 12/6/2018

Code 6: Sample program SPI RX FIFO full interrupt

6.0 Summary and Conclusion
Since data can be transmitted and received by using separate lines, the synchronous serial communications makes for a fast
interface between the UT32M0R500 master and external slave devices.

For more information about our UT32M0R500 microcontroller and other products, please visit our website:
www.frontgrade.com/HiRel

https://frontgrade.com/HiRel

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 11 of 11

UT32M0R500
SPI Unit APPLICATION NOTE

Version #: 1.0.0 12/6/2018

Revision History
Date Revision # Author Change Description Page #

12/06/18 1.0.0 JA Initial Release

Frontgrade Technologies Proprietary Information Frontgrade Technologies (Frontgrade or Company) reserves the right to make changes to any products
and services described herein at any time without notice. Consult a Frontgrade sales representative to verify that the information contained herein is
current before using the product described herein. Frontgrade does not assume any responsibility or liability arising out of the application or use of any
product or service described herein, except as expressly agreed to in writing by the Company; nor does the purchase, lease, or use of a product or service
convey a license to any patents, rights, copyrights, trademark rights, or any other intellectual property rights of the Company or any third party.

