
APPLICATION NOTE
UT32M0R500
Calculating and Converting Temperature
Sensor Codes

3/15/2021
Version #: 1.0.0

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 2 of 5

UT32M0R500
Calculating and Converting Temperature Sensor Codes APPLICATION NOTE

Version #: 1.0.0 3/15/2021

Introduction
The 17th channel of the UT32M0R500 is connected to an internal temperature sensor. This appnote will describe how to
read from this temperature channel, how to convert code into a usable value, and a very basic method of characterizing the
temperature sensor using measurements taken at cold and hot temperatures.

Reading from the ADC Temperature Channel
The below code uses the Frontgrade Software Development Kit (SDK) to enable the ADC and Temperature channel. For this
example, the ADC will be run in Single Sweep Mode.

ADC_TypeDef *ADC = (ADC_TypeDef *) ADC_BASE;
ADC_InitTypeDef ADC_InitStruct;
ADC_ChanCfgTypeDef ADC_ChanCfgStruct;

void ADC_Setup(void){

ADC_StructInit(&ADC_InitStruct);
ADC_InitStruct.SweepType = ADC_SWEEP_SINGLE;
ADC_InitStruct.OscillatorDivisor = ADC_OSCDIV_BY_4;
ADC_InitStruct.OBD_Delay = ADC_OBD_DELAY_0;
ADC_InitStruct.ModulatorSamples = 127;
ADC_InitStruct.SequenceDelay = 14;
ADC_InitStruct.ModulatorResetClocks = 8;
ADC_InitStruct.OverloadCounterThreshold = 30;
ADC_Init(ADC, &ADC_InitStruct);

}

The temperature channel must have a gain setting of 16V/V for usable codes.

void ADC_TemperatureChannelSetup(void){
ADC_ChanCfgStruct.UseDDF2 = FALSE; //COI3 for all!
ADC_ChanCfgStruct.Gain = ADC_GAIN_16VperV;//always 16V/V for temp channel
ADC_ChanCfgStruct.Enable = ENABLE;
ADC_SetChannelConfig(ADC, ADC_TEMP_CHAN, &ADC_ChanCfgStruct);

}

To perform a sweep, simply call the ADC_Sweep function.

ADC_Sweep(ADC, ENABLE);//Trigger a sweep
Once the sweep has finished, call ADC_ReadChannel to read the data. In the below code ‘ADC_TEMP_DATA_0’ is the source
of the temperature channel data, and ‘Data_ADC’ is an array of uint16_t halfwords.

ADCError = ADC_ReadChannel(ADC, ADC_TEMP_DATA_0, Data_ADC,&ADC_ChanDataStruct);

Finally, print the data to the terminal.

printf("\r\n TempChanData: 0x%0.4X d%d ADC Error: %X",
Data_ADC[0], Data_ADC[0], ADCError);

Example of the data printed to the terminal:

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 3 of 5

UT32M0R500
Calculating and Converting Temperature Sensor Codes APPLICATION NOTE

Version #: 1.0.0 3/15/2021

Converting Codes into Temperatures

Translating ADC codes into temperatures can be accomplished using a linear regression, although some users may choose
to implement more complex conversion algorithms. To convert a decimal code into Celsius, use the following equation:

Temperature (°C) = (Slope (°C) * code) + Offset (°C)

The slope and the offset will vary between parts per the Datasheet’s Temperature Monitor Characteristics Absolute
Accuracy. Because there’s a significant amount of variation between parts, users should perform characterization on each
part for best accuracy.

Basic Two-Temp Characterization

To find the slope and offset of a specific part, users will need at least two data points. The below dataset samples from the
temperature channel at -55°C and +105°C, but users could use two different temperatures to perform a basic
characterization. Users can always take samples at additional temperatures for a more complete characterization.

For this appnote, five parts were used. Each part had 100 measurements taken at both -55°C and +105°C.

Table 1: Two-Temperature Characterization Data

Part Temperature (°C) Average Code Standard Deviation Minimum Code Maximum Code

SN11
-55 2872 0.33 2871 2873

105 2242 0.42 2241 2243

SN12
-55 2878 0.36 2878 2879

105 2231 0.39 2230 2232

SN14
-55 2876 0.36 2875 2877

105 2248 0.45 2248 2249

SN15
-55 2907 0.45 2906 2907

105 2238 0.49 2237 2239

SN31
-55 2835 0.42 2834 2835

105 2205 0.36 2204 2206

To calculate the slope, simply determine how much the temperature changes over how much the code changes:

Slope = (Temp2-Temp1)/(Code2 – Code1)

Slope (SN11) = (-55°C - 105°C)/(2872 – 2242)

Slope (SN11) = (-160°C)/630

Slope (SN11) = -0.2539°C

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 4 of 5

UT32M0R500
Calculating and Converting Temperature Sensor Codes APPLICATION NOTE

Version #: 1.0.0 3/15/2021

To calculate the offset, use the slope in conjunction with one of the data points.

Offset = Temperature (°C) – (Slope (°C) * code)
Offset (SN11) = 105(°C) – (-0.2539(°C) * 2242)
Offset (SN11) = -674.39°C

Yielding a linear regression for SN11:

 Temperature_SN11 (°C) = (-0.2539 (°C) * Code_SN11) – 674.39(°C)

If SN11 had a code of 2557 (exactly halfway between codes 2872 and 2242), the above equation calculates a temperature
of 25°C, providing a way to check the equation is approximately correct against real-world data.

Equations for the other four serial numbers are:

 Temperature_SN12 (°C) = (-0.2472 (°C) * Code_SN12) – 656.71 (°C)
 Temperature_SN14 (°C) = (-0.2547 (°C) * Code_SN14) – 677.73 (°C)
 Temperature_SN15 (°C) = (-0.2391 (°C) * Code_SN15) – 640.24 (°C)
 Temperature_SN31 (°C) = (-0.2539 (°C) * Code_SN31) – 665.00 (°C)

Using the above equations, we can gain insights into the slope and offset variation of the above five parts.

Part Slope (°C) Offset (°C)
SN11 -0.2539 -674.39

SN12 -0.2472 -656.71

SN14 -0.2547 -677.73

SN15 -0.2391 -640.24

SN31 -0.2539 -665.00

Average -0.24976 -662.814

Standard Deviation 0.00598117 13.47674827

As you can see from the above data, the average slope is similar across the five parts, but the offset between parts varies
significantly.

Conclusions
The Absolute Accuracy of the UT32M0R500’s Internal Temperature Sensor means users should characterize each part for
accurate temperature readings.

h

4350 Centennial Blvd., Colorado Springs, CO 80907 • frontgrade.com • sales@frontgrade.com Page 5 of 5

UT32M0R500
Calculating and Converting Temperature Sensor Codes APPLICATION NOTE

Version #: 1.0.0 3/15/2021

Revision History
Date Revision # Author Change Description Page #

03/15/2021 1.0.0 OW Initial Release

Datasheet Definitions
 Definition

Advanced Datasheet Frontgrade reserves the right to make changes to any products and services described herein at any time
without notice. The product is still in the development stage and the datasheet is subject to change.
Specifications can be TBD and the part package and pinout are not final.

Preliminary Datasheet Frontgrade reserves the right to make changes to any products and services described herein at any time
without notice. The product is in the characterization stage and prototypes are available.

Datasheet Product is in production and any changes to the product and services described herein will follow a formal
customer notification process for form, fit or function changes.

Frontgrade Technologies Proprietary Information Frontgrade Technologies (Frontgrade or Company) reserves the right to make changes to any products
and services described herein at any time without notice. Consult a Frontgrade sales representative to verify that the information contained herein is
current before using the product described herein. Frontgrade does not assume any responsibility or liability arising out of the application or use of any
product or service described herein, except as expressly agreed to in writing by the Company; nor does the purchase, lease, or use of a product or service
convey a license to any patents, rights, copyrights, trademark rights, or any other intellectual property rights of the Company or any third party.

