rRONTGRADCL
APPLICATION NOTE
UT32MORS500

Embedded Systems Fundamentals
with the UT32MOR500 Microcontroller

12/2/2022
Version #: 1.0.0

rRONTGRADC

UTMOR500
APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller
Version #: 1.0.0 12/2/2022

Table 1: Cross Reference of Applicable Products

Manufacturer Internal Pic
Product Name Device Type
Part Number yp Number
Arm Cortex MO+ UT32MOR500 5962-17212 QS30
Overview

This app note gives an introduction to embedded systems, then goes over the processor architecture, the different
microcontroller peripherals, software development kit or SDK, and finally an application.

The picture shows an embedded system with an input, an output and a main controller. The input reads a signal from a
temperature sensor, the output writes a value to the LCD displaying the temperature in degrees Fahrenheit, and the main
controller performs the specific task with hardware and software.

The picture on the left expands the UT32MOR500 microcontroller into hardware and software. The hardware shows the
processor and different peripherals. The software starts with the ARM CMSIS core, which are drivers for the processor core
and to the right of it are drivers for the different peripherals; on top of the drivers, the picture shows the application
programming interface or API, which has function calls for the different device drivers; and finally, the program application
puts everything together.

Application

Application Programming Interface (API)

CAES Software
Development Kit (SDK)
Device Drivers

=
Arm Cortex-MO0+ System TR Interfaces
Timers
Interfaces

Hardware

Output: Displaying
Temperature

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 2 of 41

rRONTGRADC LTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

Version #: 1.0.0 12/2/2022

Cortex M0+ Processor Architecture
Overview

The ARM Cortex-MO0+ is a 32-bit RISC processor, with Von Neumann architecture, which means single bus for accessing
code and data.

The instruction set architecture or ISA is based on the ARMv6-M architecture, which freely intermixes 32 and 16-bit
instructions in a program.

The processor core contains internal registers, ALU, data path and control logic. The internal registers include 16 32-bit
registers for both general and special purposes.

32-bit RISC processor
Von Neumann Architecture
= Single bus for accessing code and data.
Instruction Set Architecture (ISA)
= based on the Arm v6-M architecture, .
which freely intermixes 32-bit instructions =

with 16-bit instructions in a program.

Processor core

= contains internal registers, ALU, data path and
Contr0| |0gic- Internal Bus System

® |nternal Registers include 16 32-bit registers
AHB-Lite Bus Interface

for both general and special usage.

Memory Single-cycle
and GPIO
Peripherals

The processor is a two-stage pipeline: execute and fetch and can fetch up to two 16-bit instructions in one transfer.

The nested vector interrupt or NVIC has one non-maskable interrupt or NMI and up to 32 physical interrupts with four
priority levels, the lower the number, the higher the priority level. The NVIC automatically handles nested interrupts. The
processor supports both level and edge-triggered interrupts.

The wakeup interrupt controller or WIC enters sleep mode by shutting most of the components. When an IRQ event is
detected, the WIC informs the power management unit to power up the system. It uses WFI (wait for interrupt), WFE (wait
for event) instructions and sleep on exit.

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 3 of 41

rRONTGRADC

UTMORS500

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

Version #: 1.0.0 12/2/2022

+ Two-Stage Pipeline
= Fetch and Execute
= Up to two 16-bit instructions can be fetched in

One transfer.

+ Nested Vector Interrupt (NVIC)

= One NMI and up to 32 physical interrupts s
O Nested Vector ¢ Processor < > Debug <
. . - . . - Interrupt Core Sul
= 4 interrupt priority levels (lower # higher priority level l Cortrober - -"“"‘“"

: : ¢
= automatically handles nested interrupts ﬂ.:...u:'i'
(WIC) Memory

= The processor supports both level and pulse interrupts e (ve)

« Wakeup Interrupt Controller (WIC) L

Internal Bus System

Enter sleep mode by shutting most of the components. i
AHB-Lite Bus Interface

When IRQ event detected, the WIC informs the power| s
management unit to power up the system. I

Single-cycle
GPIO

WEFI (wait for interrupt) and WFE (wait for event) Peipheris

instructions and sleep on exit.

The bus interconnect is a 32-bit AMBA-3 AHB-lite interface for integrating memory and peripherals.

The debug subsystem handles debug control, program breakpoints, and data watchpoints. It has a JTAG port which uses the
Keil ARM ULINK2 Debug Adapter for programming and debugging applications.

The processor has a memory protection unit or MPU with 8 regions, subregions and a background region.

Finally, the processor has the micro trace buffer or MTB for tracing instructions.

Bus Interconnect
= 32-bit AMBA-3 AHB-lite system interface
for integrating memory and peripherals

Debug Subsystem

= handles debug control, program breakpoints, ainrllg‘pc'siate
watchpoints l

= JTAG port uses the Keil ARM ULINK2 Debug Adapter
Memory Protection Unit (MPU) e

(wic)

= 8region MPU with subregions and background region

Micro Trace Buffer (MTB) Intrmal Bus System

= Micro trace buffer for tracing instructions.

T
'

Single-cycle
GPIO

al
Peripherals

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 4 of 41

rRONTGRADC LTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller
Version #: 1.0.0 12/2/2022
Registers

The internal registers are the workhorse of the processor. The processor has 13 general purpose registers
(R0O-R12) plus special registers. Most instructions can specify a general-purpose register.

Register 13 is the stack pointer or SP. The SP is 4-byte align. Main stack pointer or MSP is for applications that require
privilege access while process stack pointer or PSP is not.

- General-purpose Registers (R0-R12)

= The general-purpose registers have no special use
; g . . RO (0x20017866
= Most instructions can specify a general-purpose register R1 0x20017856
. - R2 0x00000000
» Stack Pointer (SP) Register 13 R3 (x20017864
R12 0x00000000
R13(SP) 0x20017868
MSP is used in applications that require privilege access R14 (LR) (x2000023D
R15(PC) (20000174
Handler Mode always uses MSP + xPSR 0x61000000
) Banked
Process Stack Pointer (PSP) MSP 020017868
PSP 0x00350540
System
Stack Pointer (SP) is 4-byte aligned PRIMASK 0
CONTROL 0x00
intemal
Mode Thread
Priviege Privileged
Stack MSP

Main Stack Pointer (MSP)

Thread Mode can use either MSP or PSP

Register 15 is the program counter or PC. PC holds the address of the current instruction and instructions can be either 32
or 16-bit.

Register 14 is the link register or LR. The LR receives the return address from the PC when a Branch and Link (BL) or Branch
and Link with Exchange (BLX) instruction is executed.

« Program Counter (PC) Register 15

= PC holds the address of the current instruction that is RO 0x20017866

fetched R1 0x20017856

. . :) R2 000000000
= |nstructions are either 32-bit or 16-bit R3 0x20017864

R12 0x00000000

« Link Register (LK) Register 14 R13(SP) 0x20017868

R14(LR) 0x2000023D

. : 3 R15 (PC) 0x20000174

Branch and Link (BL) or Branch and Link with ¥ xPSR 061000000
Exchange (BLX) instruction is executed =/ Banked

. . MSP (x20017868

= The LR is also used for exception return PSP 0x00350540

= The LR receives the return address from PC when a

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 5 of 41

rRONTGRADE

APPLICATION NOTE

Version #: 1.0.0

UTMOR500
Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

12/2/2022

Program status register or PSR combines the application, interrupt and execution registers into one. The application

register has the flags n, z, c and v; the interrupt register has the ISR number; and the execution register is always in thumb
state for the ARM Cortex MO+ processor.

e Special Registers: Program Status Register (PSR)

= The Program Status Register (PSR) combines the Application Program
Status Register (APSR), Interrupt Program Status Register (IPSR) and the
Execution Program Status Register (EPSR)

Application Program Status Register (APSR)

* N: negative flag- set to 1 if the result from the ALU is negative

« Z: zero flag- set to 1 if the result from the ALU is zero
C: carry flag- set to 1 if an unsigned overflow occurs
+ V:overflow flag- set to 1 if a signed overflow occurs
Interrupt program Status Register (IPSR)
* ISR Number: current ISR number

Execution program Status Register (IPSR)
¢ T: Thumb State

27] 26 25] 24] 23] 22] 21] 20] 19] 18] 17] 16] 15[14] 13] 12] 11] 10] 9] 8[7] 6] 5] 4] 3] 2] 1] 0
ISR Number

The PRIMASK register either enables or disables all interrupts. The CONTROL register selects the SP and determines
whether the SP is privilege or not.

e Special Registers: Interrupt Mask Register (PRIMASK)
= Bit 0: set to 1 disables all interrupt

= Access using CPS, MSR and MSR instructions

BIT# [31]30]20]28]27]26]25]24] 23] 22] 21 20] 19] 18] 17 16] 15[14] 13] 12] 11] 10] o] 8] 7[6] 5] 4] 3] 2] 1] 0
PRIMASK P

e Special Registers: Control Register (CONTROL)
= Bijt 0: nPRI flag

= Determines whether thread mode is privileged (0)
unprivileged (1)

= Bit 1: SPSEL flag
= Selects SP when in thread mode MSP (0) or PSP (1)

BiT# [31]30]29]28] 27] 26| 25] 24 23] 22] 21] 20] 19 18] 17] 16 15[14] 13] 12 12] 10] o] 8] 7] 6] 5] 4] 3] 2[1] 0
CONTROL SP

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 6 of 41

rRONTGRADC

APPLICATION NOTE

Version #: 1.0.0

UTMOR500
Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

12/2/2022

Armv6-M Architecture

The instruction set architecture or ISA is based on the ARMv6-M architecture profile. The picture shows that most
instructions are 16-bit instructions while only a few instructions are 32-bit instructions. Thumb-2 freely mixes 32 and 16-bit
instructions, and the ARMv6-M supports Thumb-2 technology.

- ARMv6-M Architecture Profile
= ARM instruction set supports 32-bit instructions.
= Thumb-1 instruction set supports 16-bit instructions
= Thumb-2 freely mixes 32-bit instructions and

16-bit instructions

= ARMVvV6-M architecture supports Thumb-2 technology

16-Bit Thumb Instructions Supported on Cortex-M0+
ADCS ADDS ADR ANDS

CMN CcMP CPsS EORS

LSLS LSRS MoV MVN

REV16 ROR RSB

SUBS SvC SXTB SXTH UXTB

32-Bit Thumb-2 Instructions Supported on Cortex-M0+

BL DSB DMB ISB MRS MSR

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 7 of 41

rRONTGRADC

UTMOR500
APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller
Version #: 1.0.0 12/2/2022

Arm Assembly Syntax

Continuing with the ISA, the picture shows the ARM assembly syntax. Labels are on the left, followed by mnemonic,
operands and finally a “;” is for comments. Labels are a symbolic representation of an address (the picture shows the
“loop” label representing address 0x20000164). Mnemonic is the name of the instruction (the picture shows the
instructions highlighted in bold). Finally, operands are registers.

 ARM Assembly Syntax

Example:
Label

MREmenic Onermnd iR Gpernd oM Gon e e __asm void UART_SendHelloWorld (UART_TypeDef *UARTX, const
P » P ol char *msg) ‘

Labels are symbolic representations of addresses {
= |abels are used to mark specific addresses
to refer to from other parts of the code
Mnemonic is the name of the instruction
= Most data processing instructions can optionally update
the condition flags according to the result of the operation| 0x20000168: r3,r3,#9
operandl is the destination register
Operand2 is the source register

A\

7 are comments

r2, [r0,#0x04] ; load UARTx->STATUS to r3

0x20000166: r3,#0x01

0x2000016a: r3,r3,r2
0x2000016c: r3, #0x00 ; Transmit FIFO furl bit set
0x2000016e: status ; if not, jmp to

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 8 of 41

rRONTGRADC

UTMOR500
APPLICATION NOTE

Embedded Systems Fundamentals with the UT32MOR500 Microcontroller
Version #: 1.0.0

12/2/2022

Arm Branch Instructions

Branch instructions BL, BLX and BX are subroutine instructions. When a subroutine is called, the assembly program uses the
BL instruction. The BL instruction loads the LR with the address following the BL instruction and loads the PC with the

address of first instruction of the subroutine. Finally, when returning from the subroutine, the “BX LR” loads the PC with the
address loaded in the LR, and the main program resumes execution after the function call.

= Branch Instructions

« ARMv6-M only supports thumb execution.
= B
= BL branch and link (imrmedia iine at & PC refative address
= BLX calls a subroutine at an af and instruction set

Specified by a register

= BX cause a branch lo an addre nd instruction set specified by a register

Function Call

Setan oy EUneRan i

=L B | EX 1F o=

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 9 of 41

rRONTGRADC LTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller
Version #: 1.0.0 12/2/2022
Memory Map

The ARM Cortex-MO0+ memory map has 4 GB of address space. The processor is separated into fixed regions. Hex
0x00_000_000 to hex 0x20_000_000 minus one is the code region. This region has both boot ROM and NOR Flash.

From hex 0x20_000_000 to hex 0x40_000_000 minus one is the SRAM region. Starting from hex 0x40_000_000 is the
peripheral region.

And finally, starting from hex OxEO_000_000 is the processor internal components region.

The Arm Cortex-M0+ Memory Map describes the organization of the
processor’s address space. The address space contains the regions of
Armv6-M architecture

The 32bit system has 4GB of memory space

« ltis separated into regions with different functionality

|| 5ystem ROM, MTB,
0xE010_0000 letc.

5 INVIC, SCS, etc.
0xE000_0000 Peripheral Bus

| Reserved | |
I :
AHB Perlpherals

— P prpharels
APB Perlpherals
0x2000_0000

] INOR Flash 64KB
0x0100_0000 window

32KB Boot ROM
0x0000_0000 Eeeiriel o

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 10 of 41

rRONTGRADC LTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

Version #: 1.0.0 12/2/2022

Code Region: Bootloader

The bootloader is stored in on-chip ROM at manufacture time. It has 4 boot modes: in mode 0, the bootloader loads an
image from Flash to SRAM and jumps to the image to start program execution. Mode 2 and 3 are for loading/updating an
image over UARTO and CANO respectively. For these modes, after loading/updating the image, the user needs to set mode 0
and reset the device for changes to take effect.

» The bootloader is stored in on-chip ROM

« It is programmed into the chip at
manufacture time

» The bootloader copies an executable image
from NOR Flash into SRAM and jumps to the
image.

Boot mode selection pins Boot
BOOTCFG1 BOOTCFGO Mode

Description

Load image from internal Flash memory into SRAM and execute

[o [1] 1 N SR |
“ Load/Update image over UARTO into flash (reset required)
Load/Update image over CANO into flash (reset required)

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 11 of 41

rRONTGRADC LTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

Version #: 1.0.0 12/2/2022

Flash Program Image(s)

From before, using mode 2 and 3, the bootloader can load/update up to 4 images to Flash. Each program image is 90 KB
with a 2-byte CRC.

NOR Flash Sector

« The NOR Flash is an 8MB of on-chip flash memory. i:1 141

140

» Up to 4 program images can be programmed into it.
Offset NOR Flash

» Each image can be loaded/updated via UARTO or : » s
CANO interfaces. mage override ; 5

« Each program image has two sectors of 64KB each.

0x0002_67FE| CRC (2 bytes)

Image 3 .
_0%0002_0000

Image 0

Image2 (90KB)

» The maximum program image size is 90KB or 0x167FE

Image 1

(0x16800 - 2 bytes for CRC). owo0cs_oog

Image 0

O R NWHENONR

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 12 of 41

rRONTGRADC

UTMOR500
APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller
Version #: 1.0.0 12/2/2022

SRAM Program Image

SRAM has the program image with a total of 96 KB for code and data. The program image contains the vector table, start-
up routine, application code, data and C library functions. After reset, the processor reads the MSP value, which is the
address of the beginning of the stack, then it reads the reset vector, which jumps to the beginning of the program and
execution starts from there line by line.

+ the total RAM memory is 96KB for both
code and data.
» The program image contains:
= Vector Table
= Start-up routing
= Application code and data
= C library functions

/|NonMaskableint_IRQn
£ |HardFault_IRQn

" |svcall_iran
PendSV_IRQn
SysTick_IRQn

Start-up Routine

Program Code Cortex-MO0+ 32 external interrupts
Program

Image

MBEA_IRQn
DUALTIMERO_IRQn
DUALTIMER1_IRQn
PWM_IRQn
RTC_IRQn

C Library Code

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 13 of 41

rRONTGRADE UTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

12/2/2022

Version #: 1.0.0

UT32MOR500 Peripherals
UART

Peripherals include serial interfaces, GPIQO’s, timers and analog interfaces. Starting with serial interfaces, the first UART was
designed by Gordon Bell of DEC in 1960s. it has separate transmit and receive wires. The UART implements asynchronous
serial communication (no clock needed, but devices must have the same baud rate) and uses FIFO queues to speed up
communication. The UART is often used for early software debugging by printing values to a Terminal using printf().

First UART was designed by Gordon Bell of
DEC in 1960s

Separate transmit and receive wires

UARTs implements asynchronous serial
communication from parallel data (sender
does not have to send a clock signal) S

Transmitter Transmitter
FIFO Shift Regi:

Generator
The UT32MORS00 uses the UART for the e ‘ e ‘

serial console, but it can be used for other FIFO Shift
applications

Used for serial communication with
buffering FIFO queues to speed
communications

Bus Interface

The message starts with first, the Start bit by driving the tx line low for one clock cycle. Second, data is transmitted in the
next 8 clock cycles bit by bit with optionally sending the parity bit in the 9 clock cycle. Finally, the stop bit by pulling the tx
line high to end the transmission

UART Message Format

. Start bit, data starts by driving the tx line low for one clock cycle.

Data, in the next 8 clock cycles, the transmitter sends 8 bits
sequentially (parity is for transfer reliability, but it is optional).

. Stop bit, transmission ends by pulling the tx line high.

start Bit X Bit0 X Bit1) Bit2 X Bit3) Bit4 X Bit5 X Bit6 X Bit7 X Parity X Stop Bit

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 14 of 41

rRONTGRADE UTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller
Version #: 1.0.0 12/2/2022
SPI

SPI Protocol was introduced by Motorola in late 1980s. the SPI is full duplex Synchronous serial communication. Master and
slave operating from the same clock with User-selectable data rate at even-integer division of system clock. The
UT32MOR500 SPI supports Master Mode only with user-selectable data widths of 4-16 bits.

Protocol introduced by Motorola in late 1980s
Synchronous serial communication
= Master and slave operate from the same clock
Full duplex serial communication
= Data is transmitted and received by using
separate lines
The UT32MORS500 SPI supports Master Mode only
4 line protocol sp|
SCLK - Clock generated by the master Master
MOSI - Master Out, Slave In — transmits data
from master
MISO - Master In, Slave Out — transmits data
form slave
SS - Slave Select — line asserted to select a
particular slave
User-selectable SPI data widths of 4 — 16 bits
Slaves do not need a unique address
User-selectable data rate at even-integer division of
system clock, min of 2

The SPI has 4 different clock modes: in Mode 0, the clock starts low and data is sampled on the leading rising edge of the
clock; in mode 1, clock starts low and data is sampled on the trailing falling edge of the clock; in mode 2, clock starts high
and data is sampled on the leading falling edge of the clock; and in mode 3, clock starts high and data is sampled on the
trailing rising edge of the clock.

SPI Clock Modes
ss ! : i : ! ! ! I ,—

| I I T T

SCIK (CPOL=0, CPHA<0) '_I—:_Iﬁl_l—:_‘—:_\—:_l—:_L:_\—
SCLK (CPOL=D, cmm=14]_:_,_"_,_'#,_I ’_l_‘ ‘_,_' I_,_l ,_’_:—
sax(cpm:i,cpqu)—'i_l_' |—,_I ‘_,_' I ‘_I_' I_l_' :—,_I ,_l—
SCLK (CPOL-1, CPHA=1) —\ﬁ'_|—|'_‘—:_|—:_‘—:_‘—:_|—:_|—:7

10 gito | Bt | Bit2 | Bit3 | Bita | Bit5 | Bt | Bit7

Clock Polarity and Phase SPI

Data Sampling

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 15 of 41

rRONTGRADE UTMORS00
APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

12/2/2022

Version #: 1.0.0

The message starts with first, driving SS line low to the corresponding slave. Second, slave transmits data on the
MISO line one bit per clock. Finally, the master receives the data bit by bit and ends the transaction by pulling

the SS line high.

SPI Message Format
. Master selects the corresponding slave by pulling SS line low
. The slave transmits data on the MISO line one bit per clock
. The master receives the data bit by bit and ends the transaction
by setting the SS line high

cs

4+—— Instruction 0x05

High Impedance

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 16 of 41

rRONTGRADC LTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller
Version #: 1.0.0 12/2/2022
CAN

CAN was initially developed by Bosh Corporation for automobiles, but since then, it has been used in industrial automation
and control applications. The protocol is part of the ISO 11989 standard. CAN has a max speed of 1 Mbit/s with
Master/Slave half-duplex communication, and nodes have unique address bits with 7 or 11 bit addresses to identify devices
(nodes).

CAN operates at data rates of up to 1 Mbits/s. Master controls the bus and addresses a particular slave for communication.
Transceiver uses 120 Ohms. Resistors pull up lines to VCC while Open-collector pulls lines down to GND.

Developed by Bosch Corporation for automobiles
The CAN protocol is part of the ISO 11989 standard
Max speed: 1 Mbit/s

Master/Slave half-duplex communication

Nodes have unique address bits ST S——
11 or 29 bit addresses to identify devices (nodes) CARY Conticilar AR Carillas
The CAN system consists of the bus with CANH and

CANXRXD CANXTXD CANXRXD CANXTXD

CANL wires terminated with 120 Ohm resistors, the
UT64CAN333x transceiver (recommended), and the
UT32MOR500 CAN controller e |

T

CANL CANH CANL CANH

120 Ohms 120 Ohms

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 17 of 41

rRONTGRADE UTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

Version #: 1.0.0 12/2/2022

The CAN bus contains two wires in differential mode for one logic bit; the wires are CANH and CANL. The state of the
transmitter is either dominant or recessive. When two or more nodes are competing, their output follows a wired-AND
mechanism with the dominant state overriding the recessive one.

CAN Nominal Bus Levels CAN Arbitration

The CAN bus contains two wires in differential mode for one logic bit; When two or more nodes are competing, their output follows a wired-
the wires are CANH and CANL. The state of the transmitter is either AND mechanism with the dominant state overriding the recessive one,
dominant or recessive see Figure 5 for CAN arbitration.

Voltage Nominal Bus Levels
5V

CANH

min. 1us CAN Node 0
CANH =

CANH | I | Loses Arbitration

CAN Node 1 stops transmitting

CANL VTS [I I O
Recessive Dominant Recessive CANIDws _l—l_l—l_l—l_l—l_

Figure 5: CAN Arbitration

Figure 4: CAN Nominal Bus Levels

The message starts with first, sending the start of frame (SOF) low. Second, the node sends the arbitration field which
consist of an 11-bit identifier which also determines the priority of the message when nodes contend for the bus and data
frame message type. Third, the node sends IDE low for basic mode. Fourth, DLC specifies the number of bytes. Then, the
actual data up to 8 bytes followed by a 15-bit CRC for error detection. Finally, the controller sends an ACK when correctly
receiving the message.

CAN Message Format

the start of frame (SOF)

. Then the ID which also represents the priority

. Remote transmission request (RTR) low for data frame

. Data length code (DLC) specifies number of data bytes

. Data bytes

. Cyclic redundancy check (CRC) checksum for error
detection

. Finally, acknowledge

!
| ACK to Node
]
i

CANX_’ TXD

Ioﬁ_ ID— Elnl !‘_DLCﬁ DATA

e L UL LT

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 18 of 41

rRONTGRADE UTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

12/2/2022

Version #: 1.0.0

12C

12C Protocol was introduced by Philips Semiconductor. the UT32MORS500 12C has standard mode, full speed and fast mode
with 100, 400 Kbits/s and 1 Mbit/s respectively. Communication is Half duplex with two data lines SCL and SDA. The Slave
has unique address bits for identification.

Protocol introduced by Philips
Semiconductor

Standard mode: 100 kbit/s

Full speed: 400 kbit/s

Fast mode: 1 Mbit/s

Master/Slave half-duplex communication
Slaves have unique address bits

112 devices addressable with 7 bit

addresses

1008 devices with 10 bit addresses
Two data lines —serial clock (SCL) and
serial data (SDA)

Master
(UT32MOR500)

12C operates at data rates of up to 1 Mbits/s with the master generating the clock signal. The master controls the bus and
addresses a particular slave for communication. Resistors pull up lines to VDD while Open-drain pulls lines down to GND.

12C Bus Connections

Bus is typically controlled by master device with slaves
responding when addressed.

Resistors pull up lines to VDD

Open-drain transistors pull lines down to ground
Master generates SCL clock signal

- Can range from 100 KHz to 1 MHz

iClock out | Data out |

i Clock in Data in

UT32MOR500 12C

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 19 of 41

rRONTGRADE UTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

12/2/2022

Version #: 1.0.0

The message starts with first, a start condition, which is generated by pulling SDA low. Second, the next 7 bits
are for addressing a particular device. The 8th bit indicates a read or write mode by the master. In write mode,
the slave will receive data from the master; In read mode, the slave will send data to the master. Every byte is
finished with a 9th acknowledge bit. Finally, the master ends the transaction by pulling SCL and SDA line high.

I2C Message Format
Bus Message-oriented data transfer with four parts:
1. Start condition
2. Master generates SCL clock signal
+ Address
¢« Command (read or write)
» Acknowledgement by receiver
3. Data fields
« Data byte
« Acknowledgement by receiver
4. Stop condition

“Restart :Address

NACK | | MSB

[
Send by Maste
18}

GPIO

The UT32MOR500 has 48 bi-directional GPIO’s with 18 dedicated GPIO’s initialized as inputs. GPIO’s with alternate functions
are initialized to use the alternate function. The GPIO’s are configured in three banks of 16 pins each.

48x bi-directional GPIOs

18 dedicated GPIO pins: GPI00-15, GPIO30-31
= Dedicated GPIO are initialized as inputs

GPIO with alternate functions are initialized to use the
alternate function

The GPIOs are configured in three banks of 16 pins each
Bank 0[15:0] = GPIO[15:0]
Bank 1[15:0] = GPIO[31:16] SEIG Conirelled i
Bank 2[15:0] = GPIO[47:32] Tl L

Alternate Set Register
Alternate Clear Register
Interrupt Enable Register

Interrupt Clear Register

Interrupt Type Set Register

B E—

Bus Interface

Direction
Output Enable Set Register |——)fl/’|
- Input r
Data Register -« \J

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 20 of 41

rRONTGRADC LTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

Version #: 1.0.0 12/2/2022

Inputs are in either pull-up or pull-down mode to ensure the input pins are either 1 or 0 when an external circuit doesn’t
drive the pin. Outputs are in either push-pull mode or open-drain mode. In push-pull mode, the output is either 1 or 0 and
in open-drain, the output is pull low to ground or left floating (High-Z).

Input Pull-up Pull-down Mode Output Push-Pull Mode Output Open-drain Mode
pull-up, pull-down ensures the input pin \yith 3 push-pull GPIO, a transistor ~ When the output goes low, the signal
is either 1 or 0 when an external circuit onnects to VCC or GND to drive a is actively “pulled” to ground, and
doesn’t drive the pin signal high or low. When the output ~ When the output goes high, it is left
UT32MORS00 goes low, the signal is actively “pulled” floating
to ground, and when the output goes —

utput pi

high it is actively “pushed” to VCC
it —m% At 0

Source
Current

UT32MOR500 Out)put pin

Input

Output bit Output pin
+—>»

Drain
Current

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 21 of 41

rRONTGRADC LTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller
Version #: 1.0.0 12/2/2022
Timers

A Timer is a counter with a tick as the basic time unit and generates an interrupt when it reaches a predefined value. It has
four main components: pre-scaler, compare register, timer register and capture register. A pre-scaler divides the system
clock by a predefined value either 1, 16, 256 and outputs the timer tick. A timer register increases or decreases to a
specified number of ticks. A compare register is preloaded with a desired value and if it matches the timer register value, an
interrupt is generated. A capture register takes a snapshot of the timer register at certain moments in time.

Pre-scaler Timer Register Compare Register Compare Register

Clock source as input Increases or decreases at Preloaded with desire value Loads the value from timer register at
Divides input frequency by 1, a fix tick interval to compare against timer certain events

16, 256 register An interrupt is generated at the
Outputs a tick to the other An interrupt is generated occurrence of certain events.
components when values match

Load Register

Comparator —, Interrupt Event
PCK |
|><I — |Prescaler | —¥ ‘ Timer Register

Timer Register |——— Interrupt Event

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 22 of 41

rRONTGRADE UTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

Version #: 1.0.0 12/2/2022

Timers: Dual Timers

The UT32MOR500 timers consist of dual timers, real-time counter (RTC), watchdog and PWM. For dual timers, each timer
can be either 16 or 32-bit with a clock pre-scaler value of 1, 16, or 256 and supports three different modes of operation:
free-running, periodic timer and one-shot timer.

2 independent programmable timer modules
Each timer can be either 16 or 32-bit.
Each timer supports a clock pre-scaler value of 1,
16, or 256
Each timer module can be independently enabled or
disabled
Each module supports three different modes of
operation:

= free-running, periodic timer and one-shot timer.

Timer Module

Load Register

4>| Prescaler |—[Timer Register

Timers: Real Time Counter (RTC)

The real-time counter (RTC) is a programmable 32-bit free-running timer. The current value register is used to read the
contents of the counter register at certain moments in time, and the counter wraps at matched period specified by the load
register value.

real-time counter (RTC) is a programmable 32-bit free-
running timer.

The current value register is used to read the contents of
the counter register at certain moments

counter wraps at matched period specified load register
value

RTC Module

Load Register

PCLK/RTC_CLK v
pad Counter Register

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 23 of 41

rRONTGRADC LTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller
Version #: 1.0.0 12/2/2022
Timers: PWM

Each PWM controller can have a single output, or the three controllers can be combined to form two-paired outputs. Each
PWM device is configured as a 16-bit channel, programmable dead-band scaler, programmable clock scaler, and all three
devices have a single combined Interrupt.

1 pulse width modulation (PWM) module with
three separate controllers.

Each PWM controller can have a single output,
or the three controllers can be combined to
form two-paired outputs.

Each PWM device is configured as a 16-bit
channel. PWM Module

—ﬂ PRESCALER_0|—*| PWM_PER_0 ‘H l PWM_COMP_0 ‘Hl pwm_nncomp_ol

Each PWM device includes a programmable
dead-band scaler with a range from 20ns to
81,920ns, programmable clock scaler for a
max 332ms pulse, and all three devices have a
single combined Interrupt.

7-{ PRESCALER 1 ’H‘ PWM_PER 1 ‘H ‘ PWM_COMP_1 ‘H‘ PWM_DBCOMP_1 |7 D—

ﬂ pnsscmm_z‘a‘ PWM_PER 2 ‘ﬁ ’ PWM_COMP_2 ‘H‘ PWM_DBCOMP_ZI

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 24 of 41

rRONTGRADC LTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

Version #: 1.0.0 12/2/2022

Timers: Watchdog

The watchdog begins counting down from the value loaded in the Load register. The timer can be reloaded by writing to
the Interrupt clear register. If the timer counts down to zero without being cleared, an Interrupt will be asserted and the
timer will reload. If the timer counts down to zero again without being cleared, the wdog output pin will be asserted.

The watchdog begins counting down from the value loaded
in the Load register when WDOGCLKEN = 1 and Interrupt
Enable = 1

The timer can be reloaded by writing to the Interrupt clear
register

If the timer counts down to zero without being cleared, an
Interrupt will be asserted and the timer will reload

If the timer counts down to zero again without being
cleared the WDOGREG will be asserted

I Compare Register | WDOGREG

| Comparator |—> Reset

PCLK

1
}Z{ Timer Register | WDOGLOAD

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 25 of 41

rRONTGRADC

UTMOR500
APPLICATION NOTE

Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

Version #: 1.0.0 12/2/2022

ADC

The Delta-sigma ADC samples the continuous analog Input signal at fixed time intervals and outputs a Digital value
corresponding to the average over time. The ADC has two main components: the modulator and the digital decimation
filter. The Modulator samples the analog input and outputs a stream of 1s and Os that is proportional to input voltage. The
output bit stream is output at a rate of fMOD (12.5 MHz as the default value).

The digital decimation filter, filters and down samples the modulator bitstream into the final result. The output data rate is
fDATA (100 KHz as the default value). The ratio between fMOD and fDATA is the Over Sampling Ratio (OSR). The OSR is the
ratio between fMOD and fDATA which the default value is (12.5MHz/100KHz) = 127.

Delta-Sigma ADC Modulator Digital Decimation Filter

DIGITAL
FILTER &
DECIMATION

The ADC samples the continuous analog The Modulator samples the analog input The digital decimation filter, ﬁlte—rsuam

Input signal at fixed time intervals and And outputs a stream of 1s and Os that is down samples the modulator bit

outputs a Digital value corresponding proportional to input voltage. The output into the final result. The output

to the average over time bit stream is output at a rate of fMOD is fDATA (100 KHz). The ratio bebween

(12.5 MHz) fMOD and fDATA is the Over Sampling

Ratio (OSR). The OSR is the number of
sample the modulator.
fMOD/fDATA= (12.5MHz/100KHz) = 127

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 26 of 41

rRONTGRADC

UTMOR500
APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller
Version #: 1.0.0 12/2/2022

ADC: Analog Interface

The Delta-sigma ADC input signal chain consist of a multiplexer, programmable gain amplifier (PGA), anti-aliasing low pass
filter, and ADC. The multiplexer reduces the number of ADC components, switches the respective analog input and makes it
available for conversion. It provides 16 analog inputs which can be configured single-ended, or up to 8 differential input
pairs, or a combination.

Next, The PGA is for signal conditioning with selectable gain of 0.5, 1, 2, 4, 8, or 16 V/V. The gain setting is independently
programmed per analog input channel.

Besides providing anti-aliasing filtering, the low pass filter helps keep both the input to the ADC stable and external drive
circuitry stable.

Finally, as stated before, the ADC converts the analog signal into a digital value.

Anti-Alias LP Filter

[N\

the rEuItipreAx;::reduces th‘:s The PGA is for signal Besides providing anti- the ADC converts the analog
plieinld AL ekl conditioning with selectable gjiasing filtering, the low signal into a digital value

Th Itipl itches th -
resig;,l:ivgp:::;;’;v}’rl‘;ute ane gainof 0.5, 1, 2, 4, 8, or 16 pass filter helps keep both

makes it available for conversion V/V. The gain setting is the input to the ADC stable
and provides 16 analog inputs independently programmed and external drive circuitry
which can be configured single- Per analog input channel stable.

ended, or up to 8 differential

input pairs, or a combination.

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 27 of 41

rRONTGRADC

APPLICATION NOTE

Version #: 1.0.0

UTMOR500
Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

12/2/2022

ADC: Sampling

The ADC converts an analog signal that is continuous in time and amplitude to something discrete both in time and
amplitude, so the discrete value will be an approximation to the analog signal. Amplitude is defined in terms of range,
precision, and resolution. The Range is the Min to max or 1.5 V for ADC single-ended channels; Precision is the total number
of discrete values or 4096 for the ADC; and resolution is the smallest step size the ADC can measure or 366 uV.

In terms of sampling, the ADC defines the sampling frequency, number of samples and frequency resolution. Sampling
frequency is defined as the minimum frequency that signals can be sampled without violating the Nyquist theorem, which
states that if we sample at 2Khz, the maximum signal we can represent is 1KHz. Frequency resolution is defined as the

sampling frequency/number of samples. For instance, if we have a buffer size of 8, N=8, then the frequency resolution is
1KHz.

Amplitude

Sampling Frequency

Range .
= Min to maxor 1.5V Sampling Frequency, Fs
+ Precision = Signal of interest (1/2) Fs
= total number of discrete values or 4096 Number of samples N

* Resolution Frequency resolution Fs/N
= Smallest step size the ADC can measure or 366 uV

Amplitude
1.5 V Max

=1.5V

Range

Precision = 4096
Resolution=366 uV

0V Min 1Fs 2Fs 3Fs 4Fs 5Fs 6Fs 7Fs
Sampling

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 28 of 41

rRONTGRADC

UTMOR500
APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller
Version #: 1.0.0 12/2/2022

ADC: Noise

Noise is best explained by looking at a probability mass (PMF) function. The PMF gives the number of times each
measurement was created. From the graph, the average or mean is the signal and the standard deviation is the noise.
Comparing the average with the standard deviation, we get the signal-to-noise, which is the ratio of the amplitude of the
signal relative to the noise. Now if we take the log base 2 of mu and sigma, we'll get the equivalent number of bits

associated with the noise, and if the system is too noisy, in some cases, the resolution of a noisy conversion system can be
improved by averaging.

Noise

The probability mass function (PMF) gives the
number of times each measurement was
created

signal p=mean (average)

noise o=stdev (standard deviation)
Signal to noise u /o (S/N)

Precision or effective number of bits =
log2(u/)

«— 0 —
4
552 09553 05554 09555 059556 09557 09558

Measured Output

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 29 of 41

rRONTGRADC

UTMOR500
APPLICATION NOTE

Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

Version #: 1.0.0 12/2/2022

DAC

The DAC has similar parameters to the ADC. The DAC has two 12-bit Voltage-Mode R-2R DACs; dual independent DAC
outputs; synchronous or Independent update; and power-down mode is supported.

+ DAC Overview

Two 12-bit Voltage-Mode R-2R DACs
Dual independent DAC outputs
Synchronous or Independent update
Power-down mode Soft-Reset
supported by enable bit

12b R-2R DAC

12b R-2R DAC

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 30 of 41

rRONTGRADC LTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

Version #: 1.0.0 12/2/2022

Analog Comparator

The UT32MOR500 has two High-speed Analog Comparators with Hysteresis on Inputs and Rail-to-Rail Input Common-Mode
Range; Four selectable inputs to the negative input of each comparator.

For Sensing, the analog comparator compares two analog voltages and outputs a digital value. The positive input, CMPxA
gets the external signal to be measured against different references on the negative input. If CMPxA is greater than the
negative input (-), the comparator output will be logic 0, logic 1 otherwise.

Analog Comparator Overview Sensing

the analog comparator compares two analog
voltages and outputs a digital ouput.

The positive input, CMPxA gets the external
signal to be measured against different

Two High-speed Analog Comparators
Hysteresis on Inputs
Rail-to-Rail Input Common-Mode Range

Four selectable inputs to the negative input of references on the negative input.
each comparator If CMPxA is greater than the negative input (),

Functions as support for monitoring of analog signals the con_’lparator output will be logic 0, logic 1
Low Power Shutdown Mode otherwise.

CMPxA z;

oursa [S——

From DACx

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 31 of 41

rRONTGRADC LTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller
12/2/2022

Version #: 1.0.0

Frontgrade Software Development Kit (SDK)

Frontgrade Software Development Kit (SDK) includes:

* ARM Cortex Microcontroller Software Interface Standard (CMSIS).

e Software Drivers.

* and Application Peripheral Interface (API).

Besides the SDK, the app note goes over UT32MOR500 Evaluation Board, then the ARM Keil Microcontroller Development
Kit (MDK), which is an Integrated Development Environment (IDE) that contains Compiler, Editor, Debugger and other
Tools, and finally, a program application.

» CAES Software Development Kit (SDK)
= ARM Cortex Microcontroller Software Interface Standard (CMSIS)
= Software Drivers
= Application Peripheral Interface (API)
UT32MOR500 Evaluation Board

* ARM Keil Microcontroller Development Kit (MDK)

= The MDK is an Integrated Development Environment (IDE)

Application
= The IDE contains Compiler, Editor, Debugger and other Tools Application Programming Interface (API)

Arm CMSIS-Core Device Drivers

| |
oo |
Arm Cortex-MO+ ... 5. BT
Tinasrs Interfaces

» Program Application

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 32 of 41

rRONTGRADC

UTMOR500
APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller
Version #: 1.0.0 12/2/2022

Cortex Microcontroller Software Interface Standard (CMSIS)

Cortex Microcontroller Software Interface Standard (CMSIS) is an ARM software interface standard. It supports the Cortex-
MO+ processor and provides a standardized software interface to the processor features. Functions include: Access to NVIC,
System Control Block (SCB) and System Tick Timer; Access to Special Registers; Access to special instructions; and System
Initialization functions;

» CMSIS is an ARM software interface standard
= |t supports the Cortex-M0+ processor and provides a
standardized software interface to the processor features:

* Functions include:
= Access to NVIC, System Control Block (SCB) and System Tick Timer
= Access to Special Registers
= Access to special instructions
= System Initialization functions

Application
I
Application Programming Interface (API)

Arm CMSIS-Core Device Drivers

I
Arm Cortex-M0+ St ot Interfaces
Processor il - Analog

CMSIS-CORE provides an interface to Cortex-MO+ processors and peripheral registers. CMSIS-SVD (System View Description) is
an XML file that contains the programmer's view of a complete microcontroller system, including peripherals.

¢ CMSIS-CORE provides an interface to Cortex-M0 processors and
peripheral registers

¢ CMSIS-SVD (System View Description) is an XML files that contain the

programmer's view of a complete microcontroller system, including
peripherals.

Application

Application Programming Interface (API)

Arm CMSIS-Core Device Drivers

Serial
Arm Cortex-MO+ o..s. _omos |
Nimers Interfaces

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 33 of 41

rRONTGRADE UTMORS00
APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

12/2/2022

Version #: 1.0.0

Device Drivers

A device driver is a software program that controls a specific peripheral. It provides an additional layer of abstraction that
allows programs to communicate with specific peripheral functions without the need to know the exact details of the
peripheral. The software calls a routine in the driver to perform a certain task.

* Device Drivers

= A device driver is a software program that controls a specific
peripheral.

= |t provides an additional layer of abstraction that allows programs to
communicate with specific peripheral functions without the need to
know the exact details of the peripheral.

= The software calls a routine in the driver to perform a certain task.

Application
Application Programming Interface (API)

Arm CMSIS-Core Device Drivers

|
=y
Arm Cortex-MO+ .5 EUSLCED
Processor (AHE-Lite) : Analog
Tihiars Interfaces

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 34 of 41

rRONTGRADE UTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

12/2/2022

Version #: 1.0.0

UT32MOR500 Header File

Device drivers define all the different peripherals in the UT32MOR500 header file using the same standard format. The
UT32MOR500.h header file contains: Interrupt numbers (IRQn) for all exceptions and interrupts; configuration of the
processor and peripherals, data structures and the address mapping for all peripherals; finally, the picture shows that the
application can define peripherals as a memory pointer to data structures to access their registers.

* The UT32MOR500 header file UT32MOR500.h contains:
Interrupt numbers (IRQn) for all exceptions and interrupts
Configuration of the processor and peripherals
data structures and the address mapping for all peripherals
define the peripherals as a memory pointer to data structures to
access their registers

0 = (DUALTIMER BOTH TypeDef *) DUALTIMERQ_BASE:
£ +) GPIO2 BASE;

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 35 of 41

rRONTGRADC LTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

Version #: 1.0.0 12/2/2022

Application Programmer Interface (API)

The application programming interface (API) provides easy-to-use functions by combining the functions of both CMSIS and
peripheral drivers. The picture shows APl function examples for the timer with description for each of the function calls.

The API provides easy-to-use functions by combining the functions of both
CMSIS and peripheral drivers.

API Function Examples Description

void DTIMER Init (DUALTIMER BOTH TypeDef *DTIMERx, DTIMER InitTypeDef *Config)

void DIIMER StructInit (DTIMER InitTypeDef *DTIMER InitStruct)

void DTIMER Cmd (DUALTIMER BOTH TypeDef *DTIMERx, DTIMER NUM Num, DTIMER ENABLE Enable) /*enabl
void DTIMER EnableIRQ (DUALTIMER BOTH TypeDef *DTIMERx, DTIMER NUM Num)

__STATIC INLINE void _ NVIC_EnableIRQ(IRQn Type IRQn)

SDK Library Structure

The Frontgrade SDK Library Directory Structure includes:

* Examples folder has example code for configuring and testing all the different peripherals.

« StdPeriphLib\inc folder has header files for defining the device driver APIs.

» StdPeriphLib\src folder has software programs for all device drivers.

* UT32MOR500_SpecificARM directory has ARM specific files, i.e., the ARM Cortex MO+ startup file.

+ The CAES SDK Directory Structure o=

» \SDK_x_y_z\Examples B Examples

«) adc_test

- example code for configuring and testing all the different peripherals -~ e
\SDK_x_y_z\StdPeriphLib\inc StdPeriphLib

inc
- header files for defining the device driver APIs | ut32m0_adch
ut32m0_canh

\SDK_x_y_z\StdPeriphLib\src -
«J ut32m0_adc
&) ut32m0_can

- software programs for all device drivers

\SDK_x_y_z\UT32MOR500_SpecificARM UT32MORS500_SpecificARM

- ARM specific files, i.e., the ARM Cortex MO+ startup file The

| UT32MORS500.h
src
startup_ARMCMOplus.s
«] system_ARMCMOplus
SVD

] UT32MOR500_BasiCAN.SFR
] UT32MORS00_PeliCAN.SFR
4] UT32M0_SRAM_Debug

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 36 of 41

rRONTGRADC

UTMOR500
APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller
Version #: 1.0.0 12/2/2022

UT32MOR500 Evaluation Board

UT32MOR500 EVB allows for the quickest way to get started with the UT32MOR500 microcontroller. The EVB is optimized

for rapid prototyping and supports Arduino Uno connectivity. The UT32MOR500-EVB development board is available for
purchase.

« UT32MORS500 EVB
= Quickest way to get started with the UT32MOR500 microcontroller

= Optimized for rapid prototyping

- supports Arduino Uno connectivity JTAG Interface for Debugging

The UT32MOR500-EVB development board
is available for purchase

USB-to-UART Connections

UT32MOR500 Connector Pins

Arduino Shield compatible
connectors

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 37 of 41

rRONTGRADC

UTMOR500
APPLICATION NOTE

Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

Version #: 1.0.0 12/2/2022

Arm Keil Microcontroller Development Kit (MDK)

The ARM Keil Microcontroller Development Kit (MDK) is an Integrated Development Environment (IDE). The free MDK-Lite
edition allows code size of up to 32 KB. The IDE contains Compiler, Editor, Debugger and other Tools.

ULINK2 Debug Adapter connects to the UT32MOR500 microcontroller via JTAG and allows to program and debug
applications.

- % = Project Target Manage Run-Time Environment Configuration Wizard
* ARM Keil Microcontroller Development Kit (MDK) —— ;

= The MDK is an Integrated Development Environment (IDE)

< The free MDK-Lite edition allows code size of up to 32 KB

= The IDE contains Compiler, Editor, Debugger and other Tools

= ULINK2 Debug Adapter

» The ULINK2 connects to the UT32MORS500 microcontroller via
JTAG and allows to program and debug applications

Target Debugging
Flash Programming

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 38 of 41

rRONTGRADC LTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller
Version #: 1.0.0 12/2/2022
Application

The app note focuses on going through the application, and for details on how to create a project using the Keil ARM
development tools, refer to the app note: ApNote_UT32MOR500_Creating_Projects, which can be downloaded from
Frontgrade website.

The main program is written in C, but an assembly subroutine performs the operation of sending the “hello world from
Frontgrade!” string to a Terminal. Most embedded systems are written in C with assembly language used only for critical-
time tasks. This is because writing in C is much faster when compare to assembly language.

The main program contains one variable, which is a char array with the “hello world from Frontgrade!” message; the API
function UART_Structinit initializes the UART structure to default values, UART_Init initializes the UART, and UART_Cmd
enables the UART. Finally, the UART_SendHelloWorld subroutine sends one character at a time to the Terminal.

] mix_c assembly testc g statup ARMCMOplus.s * X
X S __ asm ypid UART SendHelloWorld(UART TypeDef ‘UARTx, const char ‘msg) P
10 B {
X 11 | lgee
12 | status
X 13 LDR ; lead URRTx->STATUS to r3
14 MOVS
15 LSLS
1€ ANDS
X 17 (=31 ; Tzansmit FIFO full when bit 5 SET
x 18 BNE ; if pop, check statud
X 13 LDRE ; §he character pointed te by rl (x) is copied to r2
x 20 RDDS i Ingzemens rl by 1
X 21 STRE ; %he char in r2 is stored UARTx->DATA
X 22 P ; Has the byte a return char?
X 23 BNE ; if pop, repeat the loop
X 24 BX ; Else return from subroutine
25 |}
2¢
27
28
29 int main(void)
30 Bl {
31 const char x[]= "Hellc World from CAESI\r\n";
3z
23 Set UART default values
34 UART_StructInit (SUART InitStruct);
35
3¢ Initialize the UART
37 UART_Init (UARTO, &UART InitStruct);
38
33
40
41
42 UART_SendHelloWorld (UARTO, x) ;
43
44 for(::)
45 1 ¥
< >
7 COMS3 - Tera Term VT - [u} X

File Edit Setup Control Window Help

The window on the left shows the core registers.

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 39 of 41

rRONTGRADC LTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller

Version #: 1.0.0 12/2/2022

When a function calls a subroutine, it places the return address in the link register Ir. The arguments are passed in registers
r0 through r3, starting with r0. If there are more than 4 arguments, they are passed on the stack.

RO through r3 can be used for temporary storage if they are not used for arguments.

Registers r4 through r11 must be preserve by a subroutine. If any must be used, they must be saved first and restored
before returning. This can be done by pushing to and popping them from the stack.

The bx Ir instruction will reload the pc with the return address value from the Ir. If the function returns a value, it will be
pass through register r0.

Registers 2 [Disassembly L]
Register Value 31: const char x[]= "Hello World from CAES!\r\n": ~
o Cars 32:
333 // Set UART default values
[)0x2000063E 221C MOVS r2,#0x1C v
< >
|_] mix_c assembly_teste ¢ startup ARMCMOplus.s - X
020016010 8
0x00000000 S _ asm void UART_SendHelloWorld (UART_TypeDef *UARTX, const char *msg)
0x00000000 10HT
OxCEI4EBIE 11 | loop
0x7CC8BO1E] 12 | status
0x20000688 13 LDR r2, [x0,#0x04] ; load UARTx->STATUS to r3
14 MOVS 13, #0x01
15 LSLS r3,r3,%9
16 ANDS z3,13,12
17 CMP 13, #0x00 : Transmit FIFO full when bit § SET
18 BNE : if not, check status
19 LDRB ; the character pointed to by rl (x) is copied to 12
20 ADDS : Increment rl by 1
21 STRB ; the char in r2 is stored UARTx->DATA
22 cMP ; Was the byte a return char?
23 BNE : if not, repeat the loop
24 BX ; Else return from subroutine
25 | »
26
27
28 L

25 int main(void)

0 B¢
PH s T| const char x[]= "Hello World from CAES!\r\n";

32 v
B project | = Registers < o T) >
Command 8 H Callstack + Locals L8 <]
T E— B erini matn) A | Name Location/Value Type

v [& % main 0x00000000 int 0 ﬁl
£ 2 B9 x 0x20017854 ** auto - uchar(25]
> =
ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess COVERAGE COVIOFILE |'@‘_\,causta(ko Locals [& Memory 1

ULINK2/ME Cortex Debugger t1: 0.00000000 sec L3 CAP NUM SCRL OVR R/W

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 40 of 41

rRONTGRADC LTMORS00

APPLICATION NOTE Embedded Systems Fundamentals with the UT32MOR500 Microcontroller
Version #: 1.0.0 12/2/2022
Resources

UT32MOR500 Reference Manual: https://caes.com/sites/default/files/documents/Functional-Manual- UT32MOR500.pdf

UT32MOR500 Datasheet: https://caes.com/sites/default/files/documents/Datasheet-UT32MOR500.pdf

Cortex MO+ Technical Reference Manual: https://documentation-service.arm.com/static/60411750ee937942ba301773

Cortex MO+ Generic User Guide: https://documentation-service.arm.com/static/5f04abc8dbdee951clcdc9f7

Cortex MO+ Processor Overview: https://developer.arm.com/Processors/Cortex-MO0-Plus

UT32MOR500 App Notes: https://caes.com/product/ut32mO0r500#downloads

Revision History

Date ‘ Revision # Author Change Description
12/2/22 1.0.0 JA Initial Release.

Datasheet Definitions

Definition

Advanced Datasheet Frontgrade reserves the right to make changes to any products and services described herein at any time
without notice. The product is still in the development stage and the datasheet is subject to change.
Specifications can be TBD and the part package and pinout are not final.

Preliminary Datasheet Frontgrade reserves the right to make changes to any products and services described herein at any time
without notice. The product is in the characterization stage and prototypes are available.

Datasheet Product is in production and any changes to the product and services described herein will follow a formal
customer notification process for form, fit or function changes.

Frontgrade Technologies Proprietary Information Frontgrade Technologies (Frontgrade or Company) reserves the right to make changes to any products
and services described herein at any time without notice. Consult a Frontgrade sales representative to verify that the information contained herein is
current before using the product described herein. Frontgrade does not assume any responsibility or liability arising out of the application or use of any
product or service described herein, except as expressly agreed to in writing by the Company; nor does the purchase, lease, or use of a product or service
convey a license to any patents, rights, copyrights, trademark rights, or any other intellectual property rights of the Company or any third party.

4350 Centennial Blvd., Colorado Springs, CO 80907 e frontgrade.com e sales@frontgrade.com Page 41 of 41

https://caes.com/sites/default/files/documents/Functional-Manual-UT32M0R500.pdf
https://caes.com/sites/default/files/documents/Functional-Manual-UT32M0R500.pdf
https://caes.com/sites/default/files/documents/Datasheet-UT32M0R500.pdf
https://documentation-service.arm.com/static/60411750ee937942ba301773
https://documentation-service.arm.com/static/5f04abc8dbdee951c1cdc9f7
https://developer.arm.com/Processors/Cortex-M0-Plus
https://caes.com/product/ut32m0r500#downloads

