UT54ACS191E #### **Features** - Single down/up count control line - Look-ahead circuitry enhances speed of cascaded counters - Fully synchronous in count modes - Asynchronously pre-settable with load control - 0.6µm CRH CMOS process - Latchup immune - High speed - Low power consumption - Wide power supply operating range of 3.0V to 5.5V - Available QML Q or V processes - 16-lead flatpack - UT54ACS191E SMD 5962-96564 ### **Description** The UT54ACS191E is a performance and voltage enhanced version of the UT54ACS191 synchronous 4-bit, reversible up down binary counter. Synchronous counting operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincident with each other when so instructed. Synchronous operation eliminates the output counting spikes associated with asynchronous counters. The outputs of the four flip-flops are triggered on a low-to-high level transition of the clock input if the enable input (\overline{CTEN}) is low. A logic one applied to \overline{CTEN} inhibits counting. The direction of the count is determined by the level of the down/up (D/\overline{U}) input. When D/\overline{U} is low, the counter counts up and when D/\overline{U} is high, it counts down. The counter features a fully independent clock circuit. Changes at control inputs ($\overline{\text{CTEN}}$ and D/ $\overline{\text{U}}$) that will modify the operating mode have no effect on the contents of the counter until clocking occurs. The counter is fully programmable. The outputs may be preset to either logic level by placing a low on the load input and entering the desired data at the data inputs. The output will change to agree with the data inputs independently of the level of the clock input. The asynchronous load allows counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs. Two outputs have been made available to perform the cascading function: ripple clock and maximum/minimum (MAX/MIN) count. The MAX/MIN output produces a high-level output pulse with a duration approximately equal to one complete cycle of the clock while the count is zero (all outputs low) counting down or maximum (15) counting up. The ripple clock output (\overline{RCO}) produces a low-level output pulse under those same conditions but only while the clock input is low. The counters easily cascade by feeding the \overline{RCO} to the enable input of the succeeding counter if parallel clocking is used, or to the clock input if parallel enabling is used. Use the MAX/MIN count output to accomplish look-ahead for highspeed operation. The device is characterized over full military temperature range of -55°C to +125°C. ### **Pinout** 16-Lead Flatpack Top View ### **Function Table** | Function | LOAD | CTEN | D/ U | CLK | |--------------------|------|------|-----------------|-----| | Count Up | Н | L | L | - | | Count Down | Н | L | Н | - | | Asynchronous Reset | L | Х | Х | X | | No Change | Н | Н | Х | Х | ## **Logic Symbol** #### Note: 1) Logic symbol in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. ## **Logic Diagram** ## Operational Environment ¹ | Parameter | Limit | Units | |----------------------------|--------|-------------------------| | Total Dose | 1.0E6 | rads(Si) | | SEU Threshold ² | 108 | MeV-cm ² /mg | | SEL Threshold | 120 | MeV-cm ² /mg | | Neutron Fluence | 1.0E14 | n/cm² | #### Notes: - 1) Logic will not latchup during radiation exposure within the limits defined in the table. - 2) Device storage elements are immune to SEU affects. ## **Absolute Maximum Ratings ¹** | Symbol | Parameter | Limit | Units | |-----------------------------|---|------------------------------|-------| | V_{DD} | Supply voltage | -0.3 to 7.0 | V | | V _{I/O} | Voltage any pin | -0.3 to V _{DD} +0.3 | V | | T _{STG} | Storage Temperature range | -65 to +150 | °C | | T ₃ | Maximum junction temperature | +175 | °C | | T _{LS} | Lead temperature (soldering 5 seconds) | +300 | °C | | Θ_{JC} | Thermal resistance junction to case | 15 | °C/W | | I _I | DC input current | ±10 | mA | | P _D ² | Maximum package power dissipation permitted @ $T_C = +125$ °C | 3.2 | W | #### Notes: - 1) Stresses outside the listed absolute maximum ratings may cause permanent damage to the device. This is a stress rating only, functional operation of the device at these or any other conditions beyond limits indicated in the operational sections is not recommended. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. - 2) Per MIL-STD-883, method 1012.1, Section 3.4.1, $P_D = (T_{j(max)} T_{C(max)})/\Theta_{JC}$ ### **Recommended Operating Conditions** | Symbol | Parameter | Limit | Units | |----------------|-----------------------|----------------------|-------| | V_{DD} | Supply voltage | 3.0 to 5.5 | V | | V_{IN} | Input voltage any pin | 0 to V _{DD} | V | | T _C | Temperature range | -55 to +125 | °C | # UT54ACS191E ## DC Electrical Characteristics for the UT54ACS191E 7 $(V_{DD} = 3.0V \text{ to } 5.5V; V_{SS} = 0V^6; -55^{\circ}C < T_C < +125^{\circ}C)$ | Symbol | Parameter | Condition | MIN | MAX | Unit | |----------------------|--|--|------------------------|--------------------|---------| | V _{IL} | Low-level input voltage ¹ | V _{DD} from 3.0V to 5.5V | | 0.3V _{DD} | V | | V_{IH} | High-level input voltage ¹ | V _{DD} from 3.0V to 5.5V | 0.7V _{DD} | | V | | ${f I}_{ extsf{IN}}$ | Input leakage current | $V_{IN} = V_{DD}$ or V_{SS} | -1 | 1 | μА | | V _{OL} | Low-level output voltage ³ | $I_{OL} = 100 \mu A \label{eq:DD}$ V _{DD} from 3.0V to 5.5V | | 0.25 | V | | V _{OH} | High-level output voltage ³ | $I_{OH} = -100 \mu A$ $V_{DD} \ from \ 3.0V \ to \ 5.5V$ | V _{DD} - 0.25 | | V | | I_{OS1} | Short-circuit output current ^{2, 4} | $V_O = V_{DD}$ and V_{SS}
V_{DD} from 4.5V to 5.5V | -200 | +200 | mA | | I _{OS2} | Short-circuit output current ^{2, 4} | $V_{O} = V_{DD}$ and V_{SS}
V_{DD} from 3.0V to 3.6V | -100 | +100 | mA | | I _{OL1} | Low level output current 10 (Sink) | $V_{IN} = V_{DD}$ or V_{SS}
$V_{OL} = 0.4V$
V_{DD} from 4.5V to 5.5V | +8 | | mA | | I _{OL2} | Low level output current 10 (Sink) | $\begin{split} &V_{IN} = V_{DD} \text{ or } V_{SS} \\ &V_{OL} = 0.4V \\ &V_{DD} \text{ from } 3.0V \text{ to } 3.6V \end{split}$ | +6 | | mA | | І _{ОН1} | High level output current ¹⁰ (Source) | $\begin{split} &V_{IN} = V_{DD} \text{ or } V_{SS} \\ &V_{OH} = 0.4V \\ &V_{DD} \text{ from 4.5V to 5.5V} \end{split}$ | -8 | | mA | | I _{OH2} | High level output current ¹⁰ (Source) | $\begin{aligned} &V_{IN} = V_{DD} \text{ or } V_{SS} \\ &V_{OH} = 0.4V \\ &V_{DD} \text{ from 3.0V to 3.6V} \end{aligned}$ | -6 | | mA | | P _{total1} | Power dissipation ^{2, 8, 9} | $C_L = 50pF$
V_{DD} from 4.5V to 5.5V | | 1.4 | mW/ MHz | | P _{total2} | Power dissipation ^{2, 8, 9} | $C_L = 50pF$
V_{DD} from 3.0V to 3.6V | | 1.0 | mW/ MHz | | I_{DDQ} | Quiescent Supply Current | $V_{IN} = V_{DD}$ or V_{SS}
V_{DD} from 3.0V to 5.5V | | 25 | μА | | C _{IN} | Input capacitance 5 | f = 1MHz
$V_{DD} = 0V$ | | 15 | pF | | C _{OUT} | Output capacitance ⁵ | f = 1MHz
$V_{DD} = 0V$ | | 15 | pF | # UT54ACS191E #### Notes: - 1) Functional tests are conducted in accordance with MIL-STD-883 with the following input test conditions: $V_{IH} = V_{IH}(min) + 20\%$, -0%; $V_{IL} = V_{IL}(max) + 0\%$, -50%, as specified herein, for TTL, CMOS, or Schmitt compatible inputs. Devices may be tested using any input voltage within the above specified range, but are guaranteed to $V_{IH}(min)$ and $V_{IL}(max)$. - 2) Supplied as a design limit but not guaranteed or tested. - 3) Per MIL-PRF-38535, for current density ≤ 5.0E5 amps/cm², the maximum product of load capacitance (per output buffer) times frequency should not exceed 3,765pF/MHz. - 4) Not more than one output may be shorted at a time for maximum duration of one second. - 5) Capacitance measured for initial qualification and when design changes may affect the value. Capacitance is measured between the designated terminal and V_{SS} at frequency of 1MHz and a signal amplitude of 50mV rms maximum. - 6) Maximum allowable relative shift equals 50mV. - 7) For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C per MIL-STD-883 method 1019 condition A up to the maximum TID level procured. - 8) Power dissipation specified per switching output. - 9) Power does not include power contribution of any TTL output sink current. - 10) Guaranteed by characterization, but not tested. # UT54ACS191E ### **AC Electrical Characteristics for UT54ACS191E** ² $(V_{DD} = 3.0V \text{ to } 5.5V; V_{SS} = 0V^{-1}, -55^{\circ}C < T_{C} < +125^{\circ}C)$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | ns
8 | |--|---------| | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 8 | | t_{PHL1} LOAD to Q_{D} $C_{L} = 50pF$ 3.0V to 3.6V 2 2 4.5V to 5.5V 2 1 | | | 3.0V to 3.6V 2 2
4.5V to 5.5V 2 1 | | | 4.5V to 5.5V 2 1 | ns ns | | t t Llata in to () C = F0mF | | | t_{PLH2} Data in to Q_{n} $C_{L} = 50pF$ $3.0V to 3.6V$ 2 1 | 8 ns | | t_{PHL2} Data in to Q_{D} $C_{L} = 50pF$ 4.5V to 5.5V 2 1 | | | t_{PHL2} Data in to Q_n $C_L = 50pF$ $3.0V to 3.6V$ 2 2 | ns ns | | t_{PLH3} CLK to Q _D $C_L = 50pF$ 4.5V to 5.5V 2 1 | | | t_{PLH3} CLK to Q_{D} CL = 50pF $\frac{10.0 \times 10^{-1}}{3.0 \times 10^{-1}}$ $\frac{1}{2}$ $\frac{1}{2}$ | 6 ns | | 4.5V to 5.5V 2 1 | | | t_{PHL3} CLK to Q_{D} CL = 50pF $10.00000000000000000000000000000000000$ | 8 ns | | 4.5V to 5.5V 2 | | | t_{PLH4} CLK to \overline{RCO} CL = 50pF $3.0V$ to 3.6V 2 1 | ns ns | | 4.5V to 5.5V 2 1 | | | t_{PHL4} CLK to \overline{RCO} CL = 50pF $3.0V$ to 3.6V 2 1 | ns ns | | 4.5V to 5.5V 2 1 | 4 | | t_{PLH5} CLK to MAX/MIN $C_L = 50pF$ 3.0V to 3.6V 2 1 | 9 ns | | 4.5V to 5.5V 2 1 | | | t_{PHL5} CLK to MAX/MIN $C_L = 50pF$ $3.0V to 3.6V$ 2 2 | ns ns | | 4.5V to 5.5V 2 1 | | | t_{PLH6} D/ \overline{U} to \overline{RCO} $C_L = 50 pF$ $3.0V$ to $3.6V$ 2 1 | ns | | 4.5V to 5.5V 2 1 | | | t_{PHL6} D/ \overline{U} to \overline{RCO} $C_L = 50pF$ $3.0V$ to $3.6V$ 2 1 | ns 6 | | 4.5V to 5.5V 2 1 | | | t_{PLH7} D/ \overline{U} to MAX/MIN $C_L = 50 pF$ $3.0V$ to $3.6V$ 2 1 | ns ns | | 4.5V to 5.5V 2 1 | | | t_{PHL7} D/ \overline{U} to MAX/MIN $C_L = 50 pF$ $3.0V$ to $3.6V$ 2 1 | 4 ns | | 4.5V to 5.5V 2 | | | t_{PLH8} \overline{CTEN} to \overline{RCO} $C_L = 50pF$ $3.0V$ to $3.6V$ 2 1 | ns 1 | | 4.5V to 5.5V 2 1 | | | t_{PHL8} \overline{CTEN} to \overline{RCO} $C_L = 50pF$ $3.0V$ to $3.6V$ 2 1 | ns | | f_{MAX} Maximum clock frequency $C_L = 50pF$ 3.0V to 5.5V 7 | 0 MHz | | 4.5V to 5.5V 8 | | | t _{SU1} D/\overline{U} Setup time before CLK \uparrow $C_L = 50 pF$ $3.0V to 3.6V$ 10 | ns | | t_{SU2} CTEN low Setup time before $C_L = 50pF$ 4.5V to 5.5V 10 | | | t_{SU2} CL = 50pF | ns | # UT54ACS191E | Symbol | Parameter | Condition | V_{DD} | Minimum | Maximum | Unit | |------------------|---|-----------------------|--------------|---------|---------|------| | t _{SU3} | A, B, C, D setup time before | $C_L = 50pF$ | 4.5V to 5.5V | 4 | | ns | | CSU3 | LOAD ↑ | С_ — Эбрі | 3.0V to 3.6V | 5 | | 115 | | t _{su4} | LOAD high Setup time before | $C_L = 50pF$ | 4.5V to 5.5V | 3 | | ns | | L SU4 | CLK ↑ | СL — Эбрі | 3.0V to 3.6V | 4 | | 115 | | t _{H1} | D/\overline{U} hold time after CLK \uparrow | $C_L = 50pF$ | 3.0V to 5.5V | 0 | | ns | | t _{H2} | CTEN low hold time after CLK | $C_L = 50pF$ | 4.5v to 5.5V | 1 | | ns | | 4 H2 | \uparrow | CL = 30pi | 3.0V to 3.6V | 2 | | 10 | | t _{H3} | A, B, C, D hold time after LOAD ↑ | C _L = 50pF | 3.0V to 5.5V | 2 | | ns | | tw | Minimum pulse width CLK high or low LOAD low | C _L = 50pF | 3.0V to 5.5V | 7 | | ns | #### Notes: - 1) Maximum allowable relative shift equals 50mV. - 2) For devices procured with a total ionizing dose tolerance guarantee, the post-irradiation performance is guaranteed at 25°C per MIL-STD-883 method 1019 condition A up to the maximum TID level procured. - 3) Maximum clock frequency f_{MAX} is the max rate at which the device will count up or down at the given voltage. However, the user must wait the appropriate UP-to-Qn or Down-to-Qn propagation delay time in order to observe the current counter value. # UT54ACS191E ## **Packaging** Figure 1: Lead Flatpack #### **Notes:** - 1) All exposed metalized areas must be gold plated over electrically plated nickel per MIL-PRF-38535. - 2) The lid is electrically connected to VSS. - 3) Lead finishes are in accordance with MIL-PRF-38535. - 4) Dimension symbology is in accordance with MIL-PRF-38535. - 5) Lead position and coplanarity are not measured. - 6) ID mark symbol is vendor option no alphanumerics. ## Ordering Information: UT54ACS191E: SMD #### Notes: - 1) Lead finish (A,C, or X) must be specified. - 2) If an "X" is specified when ordering, part marking will match the lead finish and will be either "A" (solder) or "C" (gold). - 3) Total dose radiation must be specified when ordering. QML Q and QML V not available without radiation hardening. For prototype inquiries, contact factory. - 4) Device type 02 is only offered with a TID tolerance guarantee of 3E5 rads(Si) or 1E6 rads(Si) and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A and section 3.11.2. Device type 03 is only offered with a TID tolerance guarantee of 1E5 rads(Si), 3E5 rads(Si), and 5E5 rads(Si), and is tested in accordance with MIL-STD-883 Test Method 1019 Condition A. ## **Datasheet Revision History** | Revision Date | Description of Change | |---------------|------------------------------| | February 2015 | Initial Release of Datasheet | # UT54ACS191E #### **Datasheet Definitions** | | DEFINITION | |-----------------------|---| | Advanced Datasheet | CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is still in the development stage and the datasheet is subject to change . Specifications can be TBD and the part package and pinout are not final . | | Preliminary Datasheet | CAES reserves the right to make changes to any products and services described herein at any time without notice. The product is in the characterization stage and prototypes are available. | | Datasheet | Product is in production and any changes to the product and services described herein will follow a formal customer notification process for form, fit or function changes. | The following United States (U.S.) Department of Commerce statement shall be applicable if these commodities, technology, or software are exported from the U.S.: These commodities, technology, or software were exported from the United States in accordance with the Export Administration Regulations. Diversion contrary to U.S. law is prohibited. Cobham Colorado Springs Inc. d/b/a Cobham Advanced Electronic Solutions (CAES) reserves the right to make changes to any products and services described herein at any time without notice. Consult an authorized sales representative to verify that the information in this data sheet is current before using this product. The company does not assume any responsibility or liability arising out of the application or use of any product or service described herein, except as expressly agreed to in writing; nor does the purchase, lease, or use of a product or service convey a license under any patent rights, copyrights, trademark rights, or any other of the intellectual rights of the company or of third parties.